Начертательная геометрия Сопромат. Расчеты при выполнении курсового задания Техническая механика Лабораторные работы по сопротивлению материалов На главную

Сопромат. Расчеты при выполнении курсового задания

Связи и реакции связей

Все законы и теоремы статики справедливы для свободного твердого тела.

Все тела делятся на свободные и связанные.

Свободные тела — тела, перемещение которых не ограничено.

Связанные тела — тела, перемещение которых ограничено другими телами.

Тела, ограничивающие перемещение других тел, называют связями.

Силы, действующие от связей и препятствующие перемещению, называют реакциями связей.

Реакция связи всегда направлена с той стороны, куда нельзя перемещаться.

Всякое связанное тело можно представить свободным, если связи заменить их реакциями (принцип освобождения от связей).

Все связи можно разделить на несколько типов.

Связь — гладкая опора (без трения)

Рис. 1.7

Реакция опоры приложена в точке опоры и всегда направлена перпендикулярно опоре (рис. 1.7).

Гибкая связь (нить, веревка, трос, цепь)

Груз подвешен на двух нитях (рис. 1.8).

Реакция нити направлена вдоль нити от ела, при этом нить может быть только растянута.

 

Рис. 1.8

 Жесткий стержень

На схемах стержни изображают толстой сплошной линией (рис. 1.9).

Стержень может быть сжат или растянут. Реакция стержня направлена вдоль стержня. Стержень работает на растяжение или сжатие. Точное направление реакции определяют, мысленно убрав стержень и рассмотрев возможные перемещения тела без этой связи.

Возможным перемещением точки называется такое бесконечно малое мысленное перемещение, которое допускается в данный момент наложенными на него связями.

Убираем стержень 1, в этом случае стержень 2 падает вниз. Следовательно, сила от стержня 1 (реакция) направлена вверх. Убираем стержень 2. В этом случае точка Л опускается вниз, отодвигаясь от стены. Следовательно, реакция стержня 2 направлена к стене.

Рис. 1.9

Шарнирная опора

Шарнир допускает поворот вокруг точки закрепления. Различают два вида шарниров.


Математика Примеры решения задач Векторная алгебра Основы конструирования