Инженерная графика
Физика
Алгебра
Матанализ
Черчение
Лекции
Примеры
Начертательная геометрия

Сопромат

Курсовые проект
Контрольная
Задачи
Лабораторные
Практика
Школьный курс
На главную

Контрольная по математике. Примеры решения задач школьного курса Контрольная по математике

Обратная матрица

Рассмотрим квадратную матрицу

.

Обозначим D =det A.

Квадратная матрица А называется невырожденной, или неособенной, если ее определитель отличен от нуля, и вырожденной, или особенной, если D = 0.

Квадратная матрица В называется обратной для квадратной матрицы А того же порядка, если их произведение А В = В А = Е, где Е - единичная матрица того же порядка, что и матрицы А и В.

Теорема . Для того, чтобы матрица А имела обратную, необходимо и достаточно, чтобы ее определитель был отличен от нуля. Распространение тепла в неограниченном стержне Пусть в начальный момент задана температура в различных сечениях неограниченного стержня. Требуется определить распределение температуры в стержне в последующие моменты времени. К задаче распространения тепла в неограниченном стержне сводятся физические задачи в том случае, когда стержень столь длинный, что температура во внутренних точках стержня в рассматриваемые моменты времени мало зависит от условий на концах стержня.

Матрица, обратная матрице А, обозначается через А - 1 , так что В = А - 1 . Обратная матрица вычисляется по формуле

, (4.5)

где А i j - алгебраические дополнения элементов a i j.

Вычисление обратной матрицы по формуле (4.5) для матриц высокого порядка очень трудоемко, поэтому на практике бывает удобно находить обратную матрицу с помощью метода элементарных преобразований (ЭП). Любую неособенную матрицу А путем ЭП только столбцов (или только строк) можно привести к единичной матрице Е. Если совершенные над матрицей А ЭП в том же порядке применить к единичной матрице Е, то в результате получится обратная матрица. Удобно совершать ЭП над матрицами А и Е одновременно, записывая обе матрицы рядом через черту. Отметим еще раз, что при отыскании канонического вида матрицы с целью нахождения ее ранга можно пользоваться преобразованиями строк и столбцов. Если нужно найти обратную матрицу, в процессе преобразований следует использовать только строки или только столбцы.


Задачи

Ядерная энергетика