Инженерная графика
Физика
Алгебра
Матанализ
Черчение
Лекции
Примеры
Начертательная геометрия

Сопромат

Курсовые проект
Контрольная
Задачи
Лабораторные
Практика
Школьный курс
На главную

Контрольная по математике. Примеры решения задач школьного курса Контрольная по математике

Поверхности второго порядка

К невырожденным поверхностям второго порядка относятся эллипсоид, эллиптический параболоид, гиперболический параболоид, однополостной гиперболоид и двуполостной гиперболоид. Строгое изучение этих поверхностей проводится в курсе аналитической геометрии. Здесь же мы ограничимся определениями и иллюстрациями.

Определение 5.12. 

Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением a  > 0, b  > 0, c  > 0, называется эллипсоидом .

1
Рисунок 5.7.1. Приложения двойного интеграла. Вычисление площадей плоских областей Математика примеры решения заданий курсовой работы

Свойства эллипсоида.

    Эллипсоид – ограниченная поверхность, поскольку из его уравнения следует

    Эллипсоид обладает

      центральной симметрией относительно начала координат, осевой симметрией относительно координатных осей, плоскостной симметрией относительно начала координат.

    В сечении эллипсоида плоскостью, перпендикулярной любой из координатных осей, получается эллипс.

2
Рисунок 5.7.2.

Определение 5.13. 

Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением a  > 0, b  > 0, называется эллиптическим параболоидом .

Свойства эллиптического параболоида.

    Эллиптический параболоид – неограниченная поверхность, поскольку из его уравнения следует, что z  ≥ 0 и принимает сколь угодно большие значения.

    Эллиптический параболоид обладает

      осевой симметрией относительно оси Oz , плоскостной симметрией относительно координатных осей Oxz и Oyz .

    В сечении эллиптического параболоида плоскостью, ортогональной оси Oz , получается эллипс, а плоскостями, ортогональными осям Ox и Oy – парабола.

Определение 5.14. 

Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением a  > 0, b  > 0, называется гиперболическим параболоидом .

3
Рисунок 5.7.3.

Задачи

Лабораторные
Электротехника
Ядерная энергетика
История искусств
Контрольная работа
Теплотехника