Инженерная графика
Физика
Алгебра
Матанализ
Черчение
Лекции
Примеры
Начертательная геометрия

Сопромат

Курсовые проект
Контрольная
Задачи
Лабораторные
Практика
Школьный курс
На главную

Контрольная по математике. Примеры решения задач школьного курса Контрольная по математике

Эллипс. Если концы нити заданной длины закреплены в точках F 1  и  F 2 (рис. 5.3.2), то кривая, описываемая острием карандаша, скользящим по туго натянутой нити, имеет форму эллипса. Точки F 1 и F 2 называются фокусами эллипса, а отрезки V 1 V 2 и v 1 v 2 между точками пересечения эллипса с осями координат – большой и малой осями . Если точки F 1 и F 2 совпадают, то эллипс превращается в окружность.

2
Рисунок 5.3.2.

Гипербола. При построении гиперболы точка P , острие карандаша, фиксируется на нити, которая свободно скользит по шпенькам, установленным в точках F 1  и  F 2, как показано на рисунке 5.3.3, а. Расстояния подобраны так, что отрезок PF 2 превосходит по длине отрезок PF 1 на фиксированную величину, меньшую расстояния F 1 F 2. При этом один конец нити проходит под шпеньком F 1 и оба конца нити проходят поверх шпенька F 2. (Острие карандаша не должно скользить по нити, поэтому его нужно закрепить, сделав на нити маленькую петлю и продев в нее острие.) Одну ветвь гиперболы ( PV 1 Q ) мы вычерчиваем, следя за тем, чтобы нить оставалась все время натянутой, и потягивая оба конца нити вниз за точку F 2, а когда точка P окажется ниже отрезка F 1 F 2, придерживая нить за оба конца и осторожно отпуская ее. Вторую ветвь гиперболы P'V2Q' мы вычерчиваем, предварительно поменяв шпеньки F 1  и  F 2.

Ветви гиперболы приближаются к двум прямым, которые пересекаются между ветвями. Эти прямые, называемые асимптотами гиперболы , строятся как показано на рисунке 5.3.3, б. Угловые коэффициенты этих прямых равны где– отрезок биссектрисы угла между асимптотами, перпендикулярной отрезку F 2 F 1 ; отрезок v 1 v 2 называется сопряженной осью гиперболы, а отрезок V 1 V 2 – ее поперечной осью. Таким образом, асимптоты являются диагоналями прямоугольника со сторонами, проходящими через четыре точки v 1,  v 2,  V 1,  V 2 параллельно осям. Чтобы построить этот прямоугольник, необходимо указать местоположение точек v 1  и  v 2. Они находятся на одинаковом расстоянии, равном от точки пересечения осей O . Эта формула предполагает построение прямоугольного треугольника с катетами Ov 1 и V 2 O и гипотенузой F 2 O .

Если асимптоты гиперболы взаимно перпендикулярны, то гипербола называется равнобочной . Две гиперболы, имеющие общие асимптоты, но с переставленными поперечной и сопряженной осями, называются взаимно сопряженными .

Парабола. Фокусы эллипса и гиперболы были известны еще Аполлонию, но фокус параболы , по-видимому, впервые установил Папп (вторая пол. III в.), определивший эту кривую как геометрическое место точек, равноудаленных от заданной точки (фокуса) и заданной прямой, которая называется директрисой . Построение параболы с помощью натянутой нити, основанное на определении Паппа, было предложено Исидором Милетским (VI в.).

4
Рисунок 5.3.4.

Расположим линейку так, чтобы ее край совпал с директрисой LL' (рис. 5.3.4), и приложим к этому краю катет AC чертежного треугольника ABC . Закрепим один конец нити длиной AB в вершине B треугольника, а другой – в фокусе параболы F . Натянув острием карандаша нить, прижмем острие в переменной точке P к свободному катету AB чертежного треугольника. По мере того, как треугольник будет перемещаться вдоль линейки, точка P будет описывать дугу параболы с фокусом F и директрисой LL' так как общая длина нити равна AB , отрезок нити прилегает к свободному катету треугольника, и поэтому оставшийся отрезок нити PF должен быть равен оставшейся части катета AB , то есть PA . Точка пересечения V параболы с осью называется вершиной параболы , прямая, проходящая через F  и  V , – осью параболы . Если через фокус провести прямую, перпендикулярную оси, то отрезок этой прямой, отсекаемый параболой, называется фокальным параметром . Для эллипса и гиперболы фокальный параметр определяется аналогично.


Задачи

Лабораторные
Электротехника
Ядерная энергетика
История искусств
Контрольная работа
Теплотехника