Матанализ | |||
Начертательная геометрия | |||
Задачи | |||
На главную | |||
Равнобедренный треугольник
Треугольник называется равнобедренным , если у него две стороны равны. Эти стороны называются боковыми , а третья сторона – основанием .Свойства равнобедренного треугольника.
Теорема 4.3.В равнобедренном треугольнике углы при основании равны.
ДоказательствоПусть Δ ABC – равнобедренный с основанием AB . Рассмотрим Δ BAC . По первому признаку эти треугольники равны. Действительно, AC = BC ; BC = AC ;
C =
C . Отсюда следует
A =
B как соответствующие углы равных треугольников. Теорема доказана.
Теорема 4.4. Свойство медианы равнобедренного треугольника.В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.
![]()
Рисунок 4.3.1.
ДоказательствоПусть Δ ABC – равнобедренный с основанием AB , и CD – медиана, проведенная к основанию. В треугольниках CAD и CBD углы CAD и CBD равны, как углы при основании равнобедренного треугольника (по теореме 4.3), стороны AC и BC равны по определению равнобедренного треугольника, стороны AD и BD равны, потому что D – середина отрезка AB . Отсюда получаем, что Δ ACD = Δ BCD .
Из равенства треугольников следует равенство соответствующих углов:
ACD =
BCD ,
ADC =
BDC . Из первого равенства следует, что CD – биссектриса. Углы ADC и BDC смежные, и в силу второго равенства они прямые, поэтому CD – высота треугольника. Теорема доказана.
Признаки равнобедренного треугольника.
Теорема 4.5.Если в треугольнике два угла равны, то он равнобедренный.
ДоказательствоПусть Δ ABC – треугольник, в котором
A =
B . Δ ABC равен Δ BAC по второму признаку равенства треугольников. Действительно: AB = BA ;
B =
A ;
A =
B . Из равенства треугольников следует равенство соответствующих его сторон: AC = BC . Тогда, по определению, Δ ABC – равнобедренный. Теорема доказана.
Теорема 4.6.Если в треугольнике медиана является и высотой, то такой треугольник равнобедренный.
ДоказательствоВ треугольнике ABC проведем медиану BD , которая по условию также является высотой. Прямоугольные треугольники ABD и CBD равны, т. к. катет BD общий, AD = CD по построению. Следовательно, гипотенузы этих треугольников равны как соответственные элементы равных треугольников, т. е. AB = BC . Теорема доказана.
Теорема 4.7.Третий признак равенства треугольников. Если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны.
![]()
Рисунок 4.3.2.
ДоказательствоПусть Δ ABC и Δ A 1 B 1 C 1 таковы, что AB = A 1 B 1 ; BC = B 1 C 1 ; AC = A 1 C 1. Доказательство от противного.
Пусть треугольники не равны. Отсюда следует, что
одновременно. Иначе треугольники были бы равны по первому признаку.
Пусть Δ A 1 B 1 C 2 – треугольник, равный Δ ABC , у которого вершина C 2 лежит в одной полуплоскости с вершиной C 1 относительно прямой A 1 B 1. По предположению вершины C 1 и C 2 не совпадают. Пусть D – середина отрезка C 1 C 2. Треугольники A 1 C 1 C 2 и B 1 C 1 C 2 – равнобедренные с общим основанием C 1 C 2. Поэтому их медианы A 1 D и B 1 D являются высотами. Значит, прямые A 1 D и B 1 D перпендикулярны прямой C 1 C 2. A 1 D и B 1 D имеют разные точки A 1 и B 1, следовательно, не совпадают. Но через точку D прямой C 1 C 2 можно провести только одну перпендикулярную ей прямую. Мы пришли к противоречию. Теорема доказана.
Рисунок 4.3.3.
![]()
Ядерная энергетика | |||
|