Инженерная графика
Физика
Алгебра
Матанализ
Черчение
Лекции
Примеры
Начертательная геометрия

Сопромат

Курсовые проект
Контрольная
Задачи
Лабораторные
Практика
Школьный курс
На главную

Контрольная по математике. Примеры решения задач школьного курса Контрольная по математике

Критерий совместности Кронекера-Капелли

Пример . Исследовать систему уравнений и решить ее, если она совместна:

5x 1 - x 2 + 2x 3 + x 4 = 7,

2x 1 + x 2 + 4x 3 - 2x 4 = 1,

x 1 - 3x 2 - 6x 3 + 5x 4 = 0.

Решение. Выписываем расширенную матрицу системы:

` .

Вычислим ранг основной матрицы системы. Очевидно, что, например, минор второго порядка в левом верхнем углу = 7 ¹ 0; содержащие его миноры третьего порядка равны нулю:

Следовательно, ранг основной матрицы системы равен 2, т.е. r(A) = 2. Для вычисления ранга расширенной матрицы ` A рассмотрим окаймляющий минор

значит, ранг расширенной матрицы r( ` A) = 3. Поскольку r(A) ¹ r( ` A), то система несовместна.


Задачи

Ядерная энергетика