Контрольная по математике. Примеры решения задач школьного курса

Начертательная геометрия Сопромат Техническая механика Лабораторные работы по сопромату Примеры решения задач по математике

Инженерная графика
Начертательная геометрия
Машиностроительное конструирование
Детали машин
Графические обозначения материалов в сечениях
Винтовые поверхности
Условные изобращения резьбы на чертежах
Упорная резьба
Резьбовые соединения
Требования к чертежам деталей
Шероховатость поверхностей
Текстовые надписи на чертежах
Выполнение эскизов деталей
Выполнение рабочих чертежей деталей
Сопромат.
Расчеты при выполнении
курсового задания
Расчет трехопорной рамы
Лабораторные работы
Физика
Решение задач
Курсовые расчеты по электротехнике
Математика
Векторная алгебра
Примеры решения задач
Решение типового варианта контрольной
работы по математике
Школьный курс лекций
Предел последовательности
Декартова система координат
Квадратный трехчлен
Дробно-линейная функция
Графические методы решения задач
Система уравнений с двумя переменными
Метод Гаусса
Математический анализ
Векторная алгебра
и аналитическая геометрия
 

Предел последовательности Если каждому натуральному числу n поставлено в соответствие некоторое вещественное число то говорят, что задана числовая последовательность Свойства сходящихся последовательностей

Числовую последовательность { a n }, каждый член которой, начиная со второго, равен предыдущему, сложенному с одним и тем же числом d , называют арифметической прогрессией .

Числовую последовательность { b n }, первый член которой отличен от нуля, а каждый член, начиная со второго, равен предыдущему, умноженному на одно и то же число q  ≠ 0, называют геометрической прогрессией

Декартова система координат Системой координат называется совокупность одной, двух, трех или более пересекающихся координатных осей, точки, в которой эти оси пересекаются, – начала координат – и единичных отрезков на каждой из осей. Каждая точка в системе координат определяется упорядоченным набором нескольких чисел – координат . В конкретной невырожденной координатной системе каждой точке соответствует один и только один набор координат. Координаты точки в декартовой системе координат.

Полярная и сферическая системы координат Полярные координаты легко преобразовать в декартовы

Понятие числовой функции Среди всего многообразия явлений природы существуют такие, в которых взаимосвязь величин настолько тесна, что, зная значение одной из них, можно определить и значение другой. Пусть функции y  =  g  ( x ) и z  =  f  ( y ) определены на множествах D и E соответственно, причем множество значений функции f содержится в области определения функции g . Для того, чтобы кривая на декартовой координатной плоскости была графиком функции, необходимо и достаточно, чтобы всякая прямая, параллельная оси ординат, либо не пересекалась с этой линией, либо пересекала ее в одной точке. Согласно этому определению окружность, например, не может быть графиком никакой функции, так как некоторым значениям x точек, принадлежащих этой кривой (например, абсциссе центра окружности), соответствуют два значения y .

Четность функций

Нули функции Рассмотрим вопрос о нахождении нулей функции и промежутков, где функция сохраняет знак. Периодические функции

Монотонность функций Функция f  ( x ) называется возрастающей на промежутке D , если для любых чисел x 1 и x 2 из промежутка D таких, что x 1 < x 2, выполняется неравенство f ( x 1 ) < f ( x 2 ). Перечислим свойства монотонных функций (предполагается, что все функции определены на некотором промежутке D ).

Геометрический смысл метода Эйлера: Интегральная кривая заменяется ломаной, звенья которой имеют постоянную горизонтальную проекцию h.

  • Сумма нескольких возрастающих функций является возрастающей функцией.
  • Произведение неотрицательных возрастающих функций есть возрастающая функция.
  • Если функция f возрастает, то функции cf ( c  > 0) и f  +  c также возрастают, а функция cf  ( c  < 0) убывает. Здесь c – некоторая константа.
  • Если функция f возрастает и сохраняет знак, то функция 1/ f убывает.
  • Если функция f возрастает и неотрицательна, то где , также возрастает.
  • Если функция f возрастает и n – нечетное число, то f   n также возрастает.
  • Композиция g  ( f  ( x )) возрастающих функций f и g также возрастает.

    Точка наибольшего или наименьшего значения может быть экстремумом функции, но не обязательно им является. Точку наибольшего (наименьшего) значения непрерывной на отрезке функции следует искать среди экстремумов этой функции и ее значений на концах отрезка.

    Преобразование графиков функций

    Параллельный перенос Пусть имеется график функции y  =  f  ( x ). Зададимся целью построить график функции y  =  f 1  ( x ), где f 1  ( x ) =  f  ( x ) +  B . Ясно, что области определения этих функций совпадают. Пусть A  ( x 0 ;  y 0 ) – точка на графике функции y  =  f  ( x ). Соответствующая ей точка A ′ ( x 0 ;  y 1 ) с той же абсциссой имеет координаты A ′ ( x 0 ;  y 0  +  B ).

    Сжатие (растяжение) графика к оси OX задается с помощью системы уравнений

    Отражение относительно осей и точек Пусть имеется график функции y  =  f  ( x ). Чтобы получить график функции, симметричный данному относительно оси OX , нужно умножить значение функции в каждой точке области определения на –1. Алгебраически это задается системой:

    Построение графика суммы (произведения) двух функций производится сложением (умножением) ординат точек графиков с одинаковыми абсциссами. Приведем для примера графики функций y  =  x  + sin  x и y  =  x  sin  x , являющихся соответственно суммой и произведением графиков y  =  x и y  = sin  x .

    Линейная функция

    Прямая пропорциональность Рассмотрим следующую задачу. Мотоцикл движется со скоростью 50 км/ч. Построить график зависимости расстояния, пройденного автомобилем, от времени за первые 6  часов движения.

    Функция y  =  kx  +  b называется линейной функцией . Ее график получается путем параллельного переноса графика функции y  =  kx на b вверх, если b  > 0, и на | b | вниз, если b  < 0. Кроме того, если k  ≠ 0, то Значит, график функции y  =  kx  +  b получится из графика y  =  kx сдвигом на Уравнение прямой

    Квадратный трехчлен

    Квадратичной называется функция вида y  =  ax 2  +  bx  +  c , где a  ≠ 0, b , c – любые действительные числа. Уравнение ax 2  +  bx  +  c  = 0, где a  ≠ 0, называется квадратным уравнением . График функции при a  ≠ 0 называется параболой . Рассмотрим сначала функцию Областью определения этой функции являются все Решив уравнение получим x  = 0. Итак, единственный нуль этой функции x  = 0. Функция является четной (для любых ось OY является ее осью симметрии.

    Тригонометрическими называются функции вида y  = sin  x , y  = cos  x , y  = tg  x , y  = ctg  x и их комбинации.

    Синус и косинус Положение точек на координатной окружности можно задавать не только длиной дуги, но и декартовыми координатами. Построим декартову систему координат с центром в точке O , осью абсцисс, проходящей через начало отсчета A  (0), и осью ординат, проходящей через точку За единицу отсчета возьмем радиус этой окружности. Декартовы координаты точки M  ( x ) единичной окружности называются косинусом и синусом числа x : M  ( x ) =  M  (cos  x ; sin  x ). Основное тригонометрическое тождество (следствие теоремы Пифагора): sin 2   x  + cos 2   x  = 1

    Тангенсом угла x называется отношение синуса этого угла к косинусу этого же угла. Котангенсом угла x называется отношение косинуса этого угла к синусу этого же угла:

    Обратные тригонометрические функции

    Дробно-линейная функция

Степенная функция с натуральным показателем непрерывна на множестве действительных чисел. Если n нечетное, то эта функция строго возрастает и потому обратима. Обратной к ней является функция Степенная функция с четным показателем необратима

В природе и жизни человека встречается большое количество процессов, в которых некоторые величины изменяются так, что их отношение данной величины через равные промежутки времени не зависит от времени. Среди таковых можно назвать радиоактивный распад веществ, рост суммы на счету в банке и др. Все эти процессы описываются показательной функцией.

На промежутке (0; +∞) определена функция, обратная к a x ( a  > 0, a  ≠ 1). Эта функция называется логарифмической : y  = log a   x

Функция называется гиперболическим синусом . Функция называется гиперболическим косинусом .

Подобно тому, как тригонометрические синус и косинус являются координатами точки на координатной окружности, гиперболические синус и косинус являются координатами точки на гиперболе.

Графические методы решения задач

Решение неравенств Пусть задано неравенство f  ( x ) > 0 (очевидно, что все неравенства вида h  ( x ) >  g  ( x ) сводятся к рассматриваемому переносом функции g  ( x ) в левую часть). Его решением является совокупность всех точек числовой оси, удовлетворяющих данному неравенству. Решение систем уравнений и неравенств

Система уравнений с двумя переменными.

Пусть задана система уравнений Ее решением является совокупность пар чисел ( x i ;  y i ), подстановка которых в каждое из уравнений превращает его в верное равенство. Построим на координатной плоскости кривые, задаваемые уравнениями f  ( x ,  y ) = 0 и g  ( x ,  y ) = 0. Тогда можно сказать, что геометрически решением системы уравнений является совокупность всех точек M i ( x i ;  y i ), в которых пересекаются кривые, задаваемые этими уравнениями.

Поскольку каждая геометрическая фигура состоит из точек, можно говорить о точках, принадлежащих геометрической фигуре (то есть о точках, из которых она состоит) и не принадлежащих ей. Для обозначения точек будем использовать заглавные буквы латинского алфавита: A , B , ..., Z , а для обозначения прямой – строчные буквы: a , b , ..., z . Кроме того будем использовать обозначение ( AB ) для прямой, проходящей через две заданные точки A и B Общей точкой прямых a и b называется точка, лежащая на прямой a и одновременно на прямой b . Можно, например, представить две прямые, которые имеют ровно одну общую точку. Такие две прямые называются пересекающимися. Отрезком называется часть прямой, которая содержит две разные точки A и B  этой прямой ( концы отрезка ) и все точки прямой, которые лежат между ними ( внутренние точки отрезка ).

Углом называется фигура, состоящая из точки ( вершина угла ) и двух различных лучей с началами в этой точке – сторон угла

Различные виды углов Два угла называются смежными , если у них одна сторона общая, а другие стороны являются дополнительными лучами.

Параллельные прямые Две прямые называются параллельными , если они не пересекаются. Cледующая теорема дает достаточные условия параллельности (т.е. условия, выполнение которых гарантирует параллельность) двух прямых. Иначе такую теорему можно назвать признаком параллельности прямых

 

Две прямые, параллельные третьей, параллельны. Это свойство называется транзитивностью параллельности прямых.

Треугольником называется фигура, которая состоит из трех точек, не лежащих на одной прямой, и трех отрезков, соединяющих эти точки попарно. Точки называются вершинами , а отрезки – сторонами треугольника.

Признаки равенства треугольников Первый признак равенства треугольников. Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Треугольник называется равнобедренным , если у него две стороны равны. Эти стороны называются боковыми , а третья сторона – основанием . Сумма углов треугольника Треугольник называется прямоугольным , если у него есть прямой угол. Пропорциональные отрезки и средняя линия треугольника Аксиомы позволяли приписывать отрезкам и углам числа, равные их мерам, то есть измерять отрезки и углы. До сих пор не было связи между величинами углов и длинами отрезков. С введением треугольников появляется возможность связать величины градусных мер углов треугольника и длин его сторон. Рассмотрим соотношения между сторонами и углами прямоугольного треугольника . Соотношения между сторонами и углами произвольного треугольника

Теорема синусов. Стороны треугольника пропорциональны синусам противолежащих углов, т.е. Треугольник имеет шесть основных элементов: три угла A , B , C и три стороны a , b , c . Решить треугольник – значит найти все эти шесть элементов. Обычно даны три элемента, среди которых хотя бы один линейный

Окружностью называется геометрическая фигура, которая состоит из всех точек плоскости, равноудаленных от данной точки плоскости. Эта точка называется центром окружности . Отрезок, соединяющий любую точку окружности с ее центром, а также его длина, называется радиусом окружности. Центральным углом в окружности называется плоский угол с вершиной в ее центре. Дугой окружности , соответствующей центральному углу, называется часть окружности, расположенная внутри центрального угла.

Градусной мерой дуги окружности называется градусная мера соответствующего центрального угла. Угол называется вписанным в окружность, если вершина его лежит на окружности, а стороны пересекают окружность. Говорят, что вписанный угол опирается на ту дугу окружности , которая не содержит вершину вписанного угла. Так же говорят, что вписанный угол опирается на хорду, соединяющую точки пересечения окружности со сторонами угла.

Четырехугольником называется фигура, которая состоит из четырех точек, называемых вершинами, и четырех соединяющих их отрезков – сторон. Параллелограммом называется четырехугольник, у которого противолежащие стороны попарно параллельны. Высотой параллелограмма , проведенной к данной его стороне, называется перпендикуляр, опущенный из произвольной точки противолежащей стороны к прямой, содержащей данную сторону.

Две прямые в пространстве называются параллельными , если они лежат в одной плоскости и не имеют общих точек. Если две прямые a и b параллельны, то, как и в планиметрии, пишут a  ||  b . В пространстве прямые могут быть размещены так, что они не пересекаются и не параллельны. Этот случай является особым для стереометрии. Две плоскости называются параллельными , если они не имеют общих точек.

В основе изображения фигур на плоскости лежит параллельное проектирование С появлением в стереометрии скрещивающихся прямых возникает вопрос: как определить угол между двумя скрещивающимися прямыми? Изображение многоугольников и многогранников

Построения на изображениях

В этом параграфе рассматриваются задачи построений сечений многогранников. При этом, безусловно, все построения будут проводиться на изображении многогранника и, соответственно, строиться изображение сечения. Способы задания плоскости в таких задачах могут быть различными: с помощью трех точек, точки и условия параллельности какой-либо плоскости, двух параллельных прямых и т. д. Рассмотрим одну типичную задачу.

Трехгранный угол – это часть пространства, ограниченная тремя плоскими углами с общей вершиной и попарно общими сторонами, не лежащими в одной плоскости. Общая вершина О этих углов называется вершиной трехгранного угла. Стороны углов называются ребрами , плоские углы при вершине трехгранного угла называются его гранями . Грани трехгранного угла образуют двугранные углы Параллелепипед

Многогранник, у которого одна грань, называемая основанием , – многоугольник, а другие грани – треугольники с общей вершиной, называется пирамидой .

Прямым круговым цилиндром называется тело, образованное вращением прямоугольника вокруг своей стороны.

Прямым круговым конусом называется тело, образованное при вращении прямоугольного треугольника вокруг катета

Конические сечения – плоские кривые, которые получаются пересечением прямого кругового конуса плоскостью.

За исключением вырожденных случаев, коническими сечениями являются эллипсы, гиперболы или параболы. С точки зрения аналитической геометрии коническое сечение представляет собой геометрическое место точек, удовлетворяющих уравнению второго порядка.

Открывателем конических сечений предположительно считается Менехм (IV в. до н. э.). Менехм использовал параболу и равнобочную гиперболу для решения задачи об удвоении куба.

Трактаты о конических сечениях, написанные Аристеем и Евклидом в конце IV в. до н. э., были утеряны, но материалы из них вошли в знаменитые «Конические сечения» Аполлония Пергского, которые сохранились до нашего времени. Аполлоний, варьируя угол наклона секущей плоскости, получил все конические сечения из одного кругового конуса, прямого или наклонного. Аполлонию мы обязаны и современными названиями кривых – эллипс, парабола и гипербола.

Эллипс. Если концы нити заданной длины закреплены в точках F 1  и  F 2, то кривая, описываемая острием карандаша, скользящим по туго натянутой нити, имеет форму эллипса. Точки F 1 и F 2 называются фокусами эллипса, а отрезки V 1 V 2 и v 1 v 2 между точками пересечения эллипса с осями координат – большой и малой осями . Если точки F 1 и F 2 совпадают, то эллипс превращается в окружность.

Множество всех точек пространства, одинаково удаленных на расстояние R от данной точки O , называется сферой Касания круглых тел с прямой и плоскостью Плоскости, равноудаленные от центра сферы, пересекают ее по равным окружностям

Прямая, касающаяся сферы – это прямая, которая имеет единственную общую точку со сферой. Аналогично можно ввести понятие касательной прямой к поверхности конуса (цилиндра) , однако при этом рассматриваются прямые, не проходящие через точки на основании конуса (цилиндра) и через вершину конуса.

Выпуклый многогранник называется вписанным , если все его вершины лежат на некоторой сфере. Эта сфера называется описанной для данного многогранника Выпуклый многогранник называется описанным , если все его грани касаются некоторой сферы. Эта сфера называется вписанной для данного многогранника. Теорема о вписанной сфере треугольной пирамиды

Если сфера вписана в многогранник, то объем этого многогранника равен где S – площадь полной поверхности многогранника, r – радиус вписанной сферы.

Поверхности второго порядка

К невырожденным поверхностям второго порядка относятся эллипсоид, эллиптический параболоид, гиперболический параболоид, однополостной гиперболоид и двуполостной гиперболоид. Строгое изучение этих поверхностей проводится в курсе аналитической геометрии.

Свойства гиперболического параболоида. Гиперболический параболоид – неограниченная поверхность, поскольку из его уравнения следует, что z – любое число. Гиперболический параболоид обладает осевой симметрией относительно оси Oz , плоскостной симметрией относительно координатных плоскостей Oxz и Oyz . В сечении гиперболического параболоида плоскостью, ортогональной оси координат Oz , получается гипербола, а плоскостями, ортогональными осям Ox и Oy , – парабола.

Понятие объема в пространстве вводится аналогично понятию площади для фигур на плоскости.

Матрицы. Операции над матрицами

Прямоугольной матрицей размера m´n называется совокупность mn чисел, расположенных в виде прямоугольной таблицы, содержащей m строк и n столбцов

Пример . Найти произведение матриц

Пример . Швейное предприятие производит зимние пальто, демисезонные пальто и плащи. Плановый выпуск за декаду характеризуется вектором X = (10, 15, 23). Используются ткани четырех типов Т 1, Т 2, Т 3, Т 4. В таблице приведены нормы расхода ткани (в метрах) на каждое изделие. Вектор С = (40, 35, 24, 16) задает стоимость метра ткани каждого типа, а вектор P = (5, 3, 2, 2) - стоимость перевозки метра ткани каждого вида.

Определители Перестановкой чисел 1, 2,..., n называется любое расположение этих чисел в определенном порядке. В элементарной алгебре доказывается, что число всех перестановок, которые можно образовать из n чисел, равно 12...n = n!. Например, из трех чисел 1, 2, 3 можно образовать 3!=6 перестановок: 123, 132, 312, 321, 231, 213. Говорят, что в данной перестановке числа i и j составляют инверсию (беспорядок), если i>j, но i стоит в этой перестановке раньше j, то есть если большее число стоит левее меньшего Свойства определителей

Пример . Не вычисляя определителя , показать, что он равен нулю. Пример . Вычислить определитель

Ранг матрицы

Рассмотрим прямоугольную матрицу. Если в этой матрице выделить произвольно k строк и k столбцов, то элементы, стоящие на пересечении выделенных строк и столбцов, образуют квадратную матрицу k-го порядка. Определитель этой матрицы называется минором k-го порядка матрицы А. Очевидно, что матрица А обладает минорами любого порядка от 1 до наименьшего из чисел m и n. Среди всех отличных от нуля миноров матрицы А найдется по крайней мере один минор, порядок которого будет наибольшим. Наибольший из порядков миноров данной матрицы, отличных от нуля, называется рангом матрицы. Если ранг матрицы А равен r, то это означает, что в матрице А имеется отличный от нуля минор порядка r, но всякий минор порядка, большего чем r, равен нулю. Ранг матрицы А обозначается через r(A).

Пример . Найти методом окаймления миноров ранг матрицы . Обратная матрица Для матрицы найти обратную.

Критерий совместности Кронекера-Капелли Исследовать систему уравнений и решить ее, если она совместна

Метод Гаусса

Исторически первым, наиболее распространенным методом решения систем линейных уравнений является метод Гаусса, или метод последовательного исключения неизвестных. Сущность этого метода состоит в том, что посредством последовательных исключений неизвестных данная система превращается в ступенчатую (в частности, треугольную) систему, равносильную данной. При практическом решении системы линейных уравнений методом Гаусса удобнее приводить к ступенчатому виду не саму систему уравнений, а расширенную матрицу этой системы, выполняя элементарные преобразования над ее строками. Последовательно получающиеся в ходе преобразования матрицы обычно соединяют знаком эквивалентности.

Формулы Крамера

Показательная функция Упростите выражение Обратные тригонометрические функции

Рассмотрим функцию f  ( x ) = tg  x для Пример Докажите тождество Уравнения, содержащие модуль

На главную