Экзаменационные вопросы Решение задач Кинематика Курс лекций по физике Курсовые проект Оптика

Методика решения задач по физике. Примеры решения задач к контрольной работе

Дифракция

Принцип Гюйгенса-Френеля

Дифракция Френеля

Графическое вычисление амплитуды

Дифракция на круглом отверстии

Зонная пластинка

Дифракция на крае полуплоскости

Приближение коротких длин волн

 Совокупность явлений, наблюдаемых при распространении волн в среде с резкими неоднородностями, связанных с отклонениями от законов прямолинейного распространения т.е. проникновением волн в область геометрической тени и огибанием препятствий.

 Наряду с интерференцией дифракция – важнейшее проявление волновой природы явлений => критерий!

  Между интерференцией и дифракцией нет существенного отличия – оба явления – суть перераспределения волновой энергии в пространстве в результате суперпозиции волн.

  Перераспределение интенсивности, возникающее в результате суперпозиции конечного числа когерентных волн называется интерференцией волн.

 Перераспределение интенсивности, возникающее в результате суперпозиции волн, возбуждаемых когерентными источниками, расположенными непрерывно, называют дифракцией.

 Количественный критерий:, где λ – длина волны, D – характерные размеры препятствия.

 → 0 – явлением дифракции можно пренебречь,

  → 1 – явление дифракции необходимо учитывать.

Принцип Гюйгенса – Френеля

 Представление о том, что каждая точка волнового фронта является источником вторичных волн [Гюйгенс] было дополнено [Френель]: эти источники когерентны между собой, а испускаемые ими вторичные волны интерферируют. Т.О. при анализе распространения волн, необходимо учесть их фазу и амплитуду, что позволяет рассчитать интенсивность.

 


. (3.1)

Если тепловая и электромагнитная энергия по сути аналогичны друг другу в тепловых и электрических процессах, то потенциал аналогичен температуре, также как аналогичны феноменологические термины теплоты и электричества. И как теплота переходит из области высоких температур в область низких температур, так и электричество переходит из области с высоким потенциалом в область с низким потенциалом. Так возникло понятие электрического тока I, как перетока определённого количества электричества Q=It от высокого потенциала к низкому. Единицей измерения электрического тока в системе СИ установлен Ампер (А).

Таким образом, если мы знаем механические и электромагнитные свойства используемого электромагнитным полем физического пространства, а также его геометрию, мы можем всегда рассчитать мощности, возникающие при протекании токов в этом пространстве. Используя различные элементы, в том числе проводники и изоляторы, можно создать электрическую схему преобразования электрического сигнала - либо из элементов на бумаге, с последующим математическим расчётом по приведённым выше соотношениям между током и напряжением (см. закон Ома) , либо из компонентов на лабораторном стенде с последующим измерением напряжений и токов измерительными приборами. В первом случае мы имеем так называемое математическое моделирование, а во втором случае – аналоговое моделирование.

Электротехники, пользуясь тем, что в большинстве случаев применяются линейные элементы, а также то, что применяемые источники выдают либо постоянный, либо гармонический сигнал, пошли путём упрощения модели и разработки простых методов расчёта системы уравнений. Понижение порядка системы уравнений за счёт огрубления модельного представления (снижение количества ветвей и узлов) также вполне допустимо, так как все электротехнические устройства выполняются с определёнными допусками. Как мы поступили с источником, также можно поступить и с нагрузкой. В этом случае мы имеем дело с двумя «чёрными ящиками», оборудованных выходными клеммами. Их называют двухполюсниками. Если какой-либо двухполюсник содержит источник, то его называют активным, если не содержит, то пассивным. В приведённой выше схеме сопротивление Z может рассматриваться как пассивный двухполюсник


На главную