Математический анализ Векторная алгебра и аналитическая геометрия Система уравнений с двумя переменными Графические методы решения задач Дробно-линейная функция На главную

Векторная алгебра и аналитическая геометрия

Из симметрии гиперболы относительно осей координат следует, что этим же свойством обладает прямая  Прямые  и  называются асимптотами гиперболы.

На рисунке 32 показано, как с помощью основного прямоугольника гиперболы (это прямоугольник со сторонами длиной 2а и 2в, параллельными осями координат) построить асимптоты гиперболы. Из рисунка видно также взаимное расположение гиперболы и ее асимптот.

 

Рис. 32

Пример 15. Составить каноническое уравнение гиперболы, зная, что расстояние между ее фокусами равно 26, а эксцентриситет равен

Решение. По условию 2с = 26,  Следовательно, большая полуось гиперболы  Тогда малая полуось  Уравнение гиперболы имеет вид


Дифференциальное исчисление функции одной переменной