Математический анализ Векторная алгебра и аналитическая геометрия Система уравнений с двумя переменными Графические методы решения задач Дробно-линейная функция На главную

Векторная алгебра и аналитическая геометрия

Пример. Прямая  задана уравнением . Составить уравнения а) прямой , проходящей через точку  параллельно прямой ; б) прямой , проходящей через начало координат перпендикулярно прямой .

Решение. 1-й способ. Из уравнения прямой  определим нормальный вектор этой прямой . Этот вектор перпендикулярен и прямой  (рис. 26). Таким образом, для  известен нормальный вектор  и точка . Воспользуемся уравнением (2.12):  или  – уравнение . Для прямой  вектор  является направляющим  и точка . Воспользуемся уравнением (2.15): , или , или  уравнение .

 

Рис. 26

2-й способ. Запишем уравнение прямой  в виде . Найдем угловой коэффициент прямой : . Прямая , следовательно, ее угловой коэффициент ; прямая , поэтому ее угловой коэффициент . Зная угловой коэффициент прямой и координаты точки на этой прямой, можно воспользоваться уравнением (2.18). Получим уравнение прямой :  или, умножив обе части на 3, , и уравнение прямой : , то есть .


Дифференциальное исчисление функции одной переменной