Математический анализ Векторная алгебра и аналитическая геометрия Система уравнений с двумя переменными Графические методы решения задач Дробно-линейная функция На главную

Векторная алгебра и аналитическая геометрия

Скалярное произведение векторов

Скалярным произведением двух векторов (обозначается или ) называется число, равное произведению длин этих векторов на косинус угла между ними: , где .

Учитывая, что , , можно записать: . Отсюда

. (2.8)

Из физики известно: если – постоянная сила, действующая на материальную точку, а  – вектор перемещения точки под действием этой силы, то работа, совершаемая силой  на участке l, равна .

Свойства скалярного произведения:

1)     ;

2)     ;

3)     ;

4)     , или , или .

Таким образом,  – условие перпендикулярности векторов.

5)          , или, обозначая  (скалярный квадрат вектора ), получим , откуда .

Пусть известны координаты векторов  и : , .

Тогда  

Таким образом,

. (2.9)


Дифференциальное исчисление функции одной переменной