Математический анализ Векторная алгебра и аналитическая геометрия Система уравнений с двумя переменными Графические методы решения задач Дробно-линейная функция На главную

Векторная алгебра и аналитическая геометрия

Векторная алгебра и аналитическая геометрия

Векторы. Основные понятия

Вектором называется направленный отрезок. Обозначается вектор , , , , AB, a (А – начало вектора, В – его конец).

Нулевым вектором (обозначается ) называется вектор, начало и конец которого совпадают.

Расстояние между началом и концом вектора называется его длиной, или модулем, или абсолютной величиной (обозначается , ).

Векторы называются коллинеарными, если они расположены на одной прямой или на параллельных прямых (обозначают , а также , если векторы сонаправлены, и , если они противоположно направлены).

Векторы называются компланарными, если они лежат в одной плоскости или в параллельных плоскостях

Два вектора называются равными, если они сонаправлены ( ) и имеют равные длины ( ). Обозначают .

Для каждого вектора , отличного от нулевого вектора, существует противоположный вектор, который обозначается  и удовлетворяет условиям: , .


Дифференциальное исчисление функции одной переменной