Инженерная графика
Физика
Алгебра
Матанализ
Черчение
Лекции
Примеры
Начертательная геометрия

Сопромат

Курсовые проект
Контрольная
Задачи
Лабораторные
Практика
Школьный курс
На главную

Дифференциальное исчисление функции одной переменной

Производные высших порядков

Предположим, что функция y = f(x) дифференцируема в некотором интер­вале (а, в). Тогда ее производная f'(x) в этом интервале является функцией х. Пусть эта функция также имеет производную в (а, в). Эта производная называется второй производной или производной второго порядка функции y = f(x)и обозначается y'' или f''(x).

Таким образом, f''(x) = (f'(x)) '. При этом f'(x) называется первой произ­водной или производной первого порядка функции f(x).

Аналогично определяются производные третьего, четвертого и так далее порядков. Вообще, производной n –го порядка функции y = f(x) в точке х называ­ется первая производная производной (n-1)-го порядка функции y = f(x) при ус­ловии, что в точке х существуют все производные от первого до n –го порядков. Обозначение: y(n) или f(n)(x). Таким образом, f(n)(x) = ( f(n-1)(x)) '.

Производные порядка выше первого называются производными высших порядков.

Примеры.

1.                 Найти у''' для функции y = cos2x.

y' = 2cosx(-sinx) = -sin2x

y'' = -2cos2x

y''' = 4sin2x

2.                 Найти y(n) для функции y = e3x, y' = 3e3x, y'' = 32e3x, y''' = 33e3x,…, y(n) = 3ne3x

Механический смысл второй производной.

Пусть материальная точка движется прямолинейно неравномерно по закону S = f(t), где t-время, f(t) – путь, пройденный за время t. Из физики известно, что при этом ускорение точки в момент времени t равно производной скорости по t. Таким образом, ускорение w(t) = v'(t) = S''(t) равно второй производной пути по времени.


Задачи

Ядерная энергетика