Инженерная графика
Физика
Алгебра
Матанализ
Черчение
Лекции
Примеры
Начертательная геометрия

Сопромат

Курсовые проект
Контрольная
Задачи
Лабораторные
Практика
Школьный курс
На главную

Дифференциальное исчисление функции одной переменной

Производная обратной функции

Теорема. Пусть функция х = f(y) монотонна и дифференцируема в некотором интервале (a, b) и имеет в точке у этого интервала производную f'(y), не равную нулю. Тогда в соответствующей точке х обратная функция у = f--1(x) имеет производную [f--1(x)]', причем

  или

Доказательство. По условию теоремы функция x = f(y) монотонна и дифференци­руема, следовательно, по теореме о существовании обратной функции функция у = f--1(x) существует, монотонна и непрерывна на соответствующем интервале. Дадим аргументу х приращение Δх¹0. Тогда функция у = f--1(x) получит приращение Δу, которое в силу ее монотонности отлично от нуля. Так как функция у = f--1(x) непрерывна, то Δу®0 при Δх®0. Тогда .

Пользуясь доказанной теоремой, вычислим производные обратных триго­нометрических функций. Для функции у = arcsinx обратной является функция x = siny, которая является в интервале   монотонной и дифференцируе­мой. Ее производная x' = cosy в этом интервале в нуль не обращается. Поэтому . Таким образом .

Аналогично получаются формулы

Пусть y = f(u) и u = g(x). Тогда функция y = f(g(x)) называется сложной функ­цией от х.

Теорема 1. Если функция u=g(x) имеет производную u'x в точке х, а функ­ция y = f(u) имеет производную у'u в соответствующей точке u, то сложная функция y = f(g(x)) в точке х имеет производную у'x, причем у'x = у'u× u'x.

Доказательство. Дадим х приращение Δх. Тогда u и у получат соответст­венно приращения Δu и Δу. Будем считать, что Δu при Δх®0 не принимает значений, равных нулю. Тогда . Так как функция u = g(x) дифференцируема, а следовательно, непрерывна, то Δu®0 при Δх®0. Поэтому . Тогда . Это означает, что у'x = у'u× u'x.

Заметим, что теорема верна и в случае, когда при Δх®0 Δu принимает значения, равные нулю.


Задачи

Ядерная энергетика