Математический анализ Векторная алгебра и аналитическая геометрия Квадратный трехчлен Декартова система координат Предел последовательности Школьный курс лекций На главную

Дифференциальное исчисление функции одной переменной

Дифференциальное исчисление функции одной переменной

Вычисление производной

Формулы вычисления производной некоторых элементарных функций получены в курсе средней школы:

1.      С' = 0, где С – константа.

2.      n) ' = n×xn-1, где n – натуральное число

3.      (ax)'= axlna, где а>0, a ¹ 1. В частности, (ех)' = ех

4.      , где а>0, a ¹ 1. В частности,

5.      (sinx)' = cosx

6.      (cosx)' = -sinx

В курсе средней школы установлены основные правила дифференцирования.

Пусть u = u(x) и v = v(x) – функции, дифференцируемые в точке х. Тогда в этой точке дифференцируемы функции u+v, u×v, . Последнее при условии, что v(x) ¹ 0. Причем

(u+v)' = u'+v'

(u×v)' = u'v+uv'

Следствием последних трех соотношений являются следующие два: (сu)' = cu', где с – константа, и (u-v)' = u'-v'

Используя правило нахождения производной частного, легко получаются формулы:   и , которые выполняются для любого х, при котором существует tgx и cosx ¹ 0 или существует ctgx и sinx¹0.


Пределы и непрерывность функции