Математический анализ Векторная алгебра и аналитическая геометрия Квадратный трехчлен Декартова система координат Предел последовательности Школьный курс лекций На главную

Дифференциальное исчисление функции одной переменной

Теорема (достаточный признак существования точки перегиба). Если вторая производная   непрерывной функции меняет знак при переходе аргумента через точку х0, то точка (х0; f(х0)) является точкой перегиба графика функции.

Доказательство. Пусть, например, (х)< 0 в интервале (х0-e; х0) и > 0 в ин­тервале (х0; х0+e), где e – положительное число. В этом случае график функции в интервале (х0–ε; х0) выпуклый, а в интервале (х0; х0) – вогнутый. Следовательно, точка (х0; f(х0)) по определению является точкой перегиба.

Теорема 7. (необходимое условие существования точки перегиба). Пусть функция y = f(x) имеет в интервале (a, b) непрерывную вторую производную f''(x) и пусть точка х0 (a, b) является абсциссой точки перегиба графика данной функции. тогда f''(x0) = 0.

Доказательство. Предположим противное: f''(x0) 0, например, для определенности f''(x0)>0. Тогда в силу непрерывности f''(x0)>0 в некоторой окрестности точки х0. Следовательно, в этой окрестности график вогнутый, но это противоречит тому, что х0 – абсцисса точки перегиба. Противоречие доказывает теорему.

Замечание. Могут встретиться случаи, когда в точке х0 вторая производная непрерывной функции не существует, однако точка является абсциссой точки перегиба. Например, для функции у =   у'' = 10/(9 ) у''(0) не существует. Очевидно, что у''<0 при х (-∞;0) и у''>0 при х (0;+∞), то есть точка (0; 0) является точкой перегиба.

Точки, в которых вторая производная функции равна нулю или не существует, называются критическими точками функции второго порядка. Как мы отметили, не все такие точки являются абсциссами точек перегиба.


Пределы и непрерывность функции