Математический анализ Векторная алгебра и аналитическая геометрия Квадратный трехчлен Декартова система координат Предел последовательности Школьный курс лекций На главную

Дифференциальное исчисление функции одной переменной

Выпуклость и вогнутость графика функции

Точки перегиба

График дифференцируемой функции у = f(x) называется выпуклым (вогнутым) в интервале (а,b), если он расположен ниже (выше) любой своей касательной на этом интервале.

Точка графика непрерывной функции, отделяющая ее выпуклую часть от вогнутой, называется точкой перегиба.

Теорема 5. (достаточный признак выпуклости и вогнутости). Пусть функция у = f(x) имеет вторую производную (x) во всех точках интервала (а, b). Если во всех точках этого интервала < 0, то график в (а, b) выпуклый; если же > 0 – вогнутый.

Доказательство. Допустим для определенности, что< 0 и докажем, что гра­фик выпуклый. Возьмем на графике функции произвольную точку М0 с абсциссой х0Î (а, b) и проведем через точку М0 касательную. Для доказательства теоремы нужно показать, что для одной и той же абсциссы x ордината кривой меньше ординаты касательной. Это будет означать, что график функции нахо­дится ниже касательной. Уравнение касательной в точке М0 имеет вид У – f (х0) = f (х0).(х-х0). Здесь через У обозначена ордината касательной, соот­ветствующая абсциссе x.

Разность ординат графика и касательной при одной и той же абсциссе x равна

или

Применяя к разности f(х) -f(х0) формулу Лагранжа, получаем

  где c заключено между х и х0.

К разности тоже применим формулу Лагранжа, получим

, где c1 заключено между х0 и c, а, следовательно, между х0 и х. По условию (x)< 0 в интервале (а; b),значит (c1)< 0. Разности х- х0 и c – х0 одного знака, так как c заключено между х0 и х, значит (х- х0)(c – х0)> 0.

Поэтому у – У < 0 или у <У. Мы доказали, что для любой точки x интервала (а, b) ордината касательной больше ординаты графика, то есть график выпуклый. Аналогично доказывается, что при > 0 график вогнутый.


Пределы и непрерывность функции