Инженерная графика
Физика
Алгебра
Матанализ
Черчение
Лекции
Примеры
Начертательная геометрия

Сопромат

Курсовые проект
Контрольная
Задачи
Лабораторные
Практика
Школьный курс
На главную

Дифференциальное исчисление функции одной переменной

Дифференциальное исчисление функции одной переменной

Теорема (о связи дифференцируемости и непрерывности). Если функция у = f(x) дифференцируема в точке х0, то она непрерывна в этой точке.

Доказательство. Пусть аргумент х получает в точке х0 приращение ¹ 0. Ему соответствует некоторое приращение функции . Вычислим предел:

а это и означает непрерывность функции в точке х0.

Заметим, что обратная теорема неверна: существуют непрерывные функции, которые в некоторых точках не дифференцируемы. Примерами могут слу­жить функции у = çх çи в точке х = 0. В обоих случаях (0) не существует.

Заметим, что график у = çх çв точке х = 0 не имеет касательной, а график в точке х=0 имеет вертикальную касательную – ось Оу.

Можно показать, что для того, чтобы функция у = f(x) была дифференцируемой в точке х0, необходимо и достаточно, чтобы ее график имел невертикаль­ную касательную в точке (х0, f(х0)).


Задачи

Ядерная энергетика