Инженерная графика
Физика
Алгебра
Матанализ
Черчение
Лекции
Примеры
Начертательная геометрия

Сопромат

Курсовые проект
Контрольная
Задачи
Лабораторные
Практика
Школьный курс
На главную

Дифференциальное исчисление функции одной переменной

Теорема Лопиталя (Правило Лопиталя)

Пусть - функции, непрерывные на [а, b], дифференцируемые в(а, b);   при всех хÎ (а, b) и f (а) = (а) = 0.

Тогда, если существует , то существует ,причем   = .

Доказательство. Возьмем на [а, b] какую-нибудь точку х   а. Применяя формулу Коши, получим , где сÎ (а; х).

По условию f (а) = (а) = 0, значит . Если х а, то и са, так как сÎ (а, х).

При этом, если существует =А, то существует и   = А.

Поэтому =   =     = = А.

Теорема доказана.


Задачи

Ядерная энергетика