Инженерная графика
Физика
Алгебра
Матанализ
Черчение
Лекции
Примеры
Начертательная геометрия

Сопромат

Курсовые проект
Контрольная
Задачи
Лабораторные
Практика
Школьный курс
На главную

Дифференциальное исчисление функции одной переменной

Теорема (О связи между существованием производной и существованием дифференциала). Для того, чтобы функция y = f(x) имела в точке х дифференциал, необходимо и достаточно, чтобы она имела в этой точке производную.

Доказательство. Необходимость. Пусть функция y = f(x) имеет в точке х дифференциал. Это означает, что ее приращение в этой точке можно представить в виде: Dу = АDх+0(Dх). Разделим обе части последнего равенства на Dх и перейдем к пределу при Dх®0. Получим . Но следовательно,   существует и. Отметим, что выражение дифференциала функции принимает вид: dy = f'(x) Dx.

Достаточность. Пусть функция y = f(x) имеет в точке х производную . По свойству предела функции , где - бесконечно малая функция при Dх®0. Умножим обе части последнего равенства на Dх, получим . Действительно, . Мы получили: , что и означает, что функция y = f(x) имеет в точке х дифференциал dy = f'(x) Dx. Теорема доказана.

Замечание. Рассмотрим функцию у = х. Ее дифференциал равен:

dy = dx = x'Dx = Dx. Таким образом, дифференциал независимой переменной равен ее приращению dx = Dx. Тогда выражение дифференциала функции можно записать в виде: dy = f'(x) dx. Заметим, что .


Задачи

Ядерная энергетика