Инженерная графика
Физика
Алгебра
Матанализ
Черчение
Лекции
Примеры
Начертательная геометрия

Сопромат

Курсовые проект
Контрольная
Задачи
Лабораторные
Практика
Школьный курс
На главную

Дифференциальное исчисление функции одной переменной

Дифференциальное исчисление функции одной переменной

Производная Основные понятия

Пусть дана функция y = f(x). Рассмотрим два значения ее аргумента: исходное х0 и новое х. Разности = х-х0 и D y = f(x)-f(x0) = y-y0 называются соответственно приращением аргумента и приращением функции в точке х0. Очевидно, что х = х0+Dх, у = у0+Dу, = f(x0+Dx)-f(x0). В дальнейшем будем считать значение х0 фиксированным, а х – переменным. При этом и являются пе­ременными величинами.

Производной функции у = f(x) в точке х0 называется если этот предел существует. Производная обозначается у'(x0) или f'(x0). Таким образом, .

Пусть Х = {х}-множество всех таких х, для которых существует y'(х). Очевидно, что (х) является функцией, определенной на множестве Х.

Нахождение производной функции называется дифференцированием этой функции. Функция, имеющая производную в точке х0, называется дифференцируемой в этой точке. Функция, дифференцируемая в каждой точке интервала (a, b), называется дифференцируемой на интервале (a, b).

Из курса средней школы известен геометрический смысл производной. Пусть функция у = f(x) дифференцируема в точке х0, тогда угловой коэффициент касательной к графику функции, проведенной в точке (х0, f(х0)) равен у'(х0).

Из курса средней школы известен также физический смысл производной. Пусть материальная точка движется прямолинейно неравномерно по закону S = f(t), где t – время, S – путь, проходимый точкой за время t. Тогда скорость точки в момент времени t равна: V = S'(t).


Задачи

Ядерная энергетика