Математический анализ Векторная алгебра и аналитическая геометрия Квадратный трехчлен Декартова система координат Предел последовательности Школьный курс лекций На главную

Пределы и непрерывность функции

Пределы и непрерывность функции

Предел функции

Совокупность значений некоторых величин, как правило, лишенных физического содержания, представляет собой некоторые числовые множества. Будем обозначать множества большими буквами латинского алфавита: А,В,..,Х,У. Элементы этих множеств будем обозначать малыми буквами, а тот факт, что какой-то элемент принадлежит некоторому множеству, будем обозначать символом Î (принадлежит): х Î Х,у Î Y. Кроме того, мы будем использовать символы " (любой) и $ (существует).

  Если каждому элементу хÎХ поставлен в соответствие единственный элемент у=f(х) Î У, где Х и Y -данные числовые множества, то у называется функцией от х, определенной на множестве Х.

  Этот факт записывают так: у=f(х). Х называют множеством определения функции, а множество Y – множеством ее значений.

  Можно сказать, что функция f осуществляет отображение множества Х в Y.

  Eсли любой элемент у Î Y является значением функции f, тo говорят, что функция f отображает множество Х на множество  

 Пример 1. Функция f(х) = sin х отображает интервал Х = (0,2p) на отрезок [-1,1].

  Действительно, изобразим у = sin х в интервале (0,2p). Очевидно, что каждое число из отрезка [-1,1] оси ОY является значением функции у = sin х.

Пусть между элементами множеств X и Y функция y=f(x) устанавливает взаимно однозначное соответствие, то есть "xÎX соответствует один и только один его образ y =f(x) Î Y и обратно, для " y Î Y найдется единственный прообраз x Î X такой, что f(x) = y. Тогда функция x =f--1(y), где y Î Y, устанавливающая соответствие между элементами множеств Y и X, называется обратной для функции y = f(x).

 Иначе: обратная функция f -1 является отображением множества Y на множество X.


Пределы и непрерывность функции