Начертательная геометрия Сопромат. Расчеты при выполнении курсового задания Техническая механика Лабораторные работы по сопротивлению материалов На главную

Начертательная геометрия примеры решения задач, лекции и конспекты

Построение линии пересечения двух плоскостей Плоскость перпендикулярная профильной плоскости проекций Эта плоскость на виде слева изображается в виде прямой, а на виде спереди занимает всю плоскость проекций

Прямая линия, получаемая при взаимном пересечении двухплоскостей, определяется двумя точками, каждая из которых одновременно принадлежит обеим плоскостям.

На рис. 3.37 плоскость общего положения, заданную тре-угольником АВС, пересекает фронтально - проецирующая плоскость, заданная треугольником DEF, Так как треугольник DEF проецируется на плоскость V в виде прямой линии D"F", то фронтальная проекция линии пересечения обеих плоскостей представляют собой отрезок K1"K2". Находим его горизонталь-ную проекцию и определяем видимость.

 Рис.3.37 Рис.3.38

35

Горизонтально проецирующая плоскость а пересекает плоскость треугольника АВС (рис, 3.3 8), Горизонтальная проекция линии пересечения этих плоскостей представляет из себя отрезок M'N', который определяется на следе оси'.

Если плоскости заданы следами на плоскостях проекций, то, токи, определяющие прямую пересечения плоскостей} следует выбирать в точках пересечения одноименных следов плоскостей (рис.3.39); прямая, проходящая через эти точки, общие для обеих плоскостей, - их линия пересечения. Поэтому для построения проекций линии пересечения плоскостей a и b необходимо:

1) найти точку М' в пересечении следов aн' и bн' и точку N" в пересечении an¢ ¢и bn¢¢, а по ним проекции М" и N'.

2) провести прямые линии M¢¢N¢¢ и M'N'.

Рис.3.39

Точки пересечения одноименных следов плоскостей являются следами линии пересечения этих плоскостей.

Рис.3.40

36

На рис.3.40 пересекаются плоскости a и b. Плоскость a плоскость общего положения, Плоскость b - горизонтальная плоскость. Для построения линии пересечения необходимо:

1) найти точку N" в пересечении следов an¢¢ и bv¢¢;

2) провести через эту точку прямую, исходя из положения

плоскостей и их следов.

На рисунках (3.40 - 3.42) показаны случаи, когда известно направление линии пересечения. Поэтому достаточно иметь лишь одну точку от пересечения следов и, затем, провести через эту точку прямую, исходя из положения плоскостей и их следов.

3.7.Пересечение прямой линии с плоскостью общего положения

Построение точки пересечения прямой с плоскостью общего положения выполняется по следующему алгоритму:

1) через данную прямую (MN) провести некоторую вспомогательную плоскость (g);

2} построить прямую (ED), линию пересечения данной плоскости (АВС) и вспомогательной плоскости (g);

3) определить положение точки (К) пересечения данной прямой (MN) и построенной линии пересечения (ED);

4) определить видимость прямой (MN) относительно плоскостей Н и V.

На рис.3.43 прямая MN пересекает плоскость, заданную треугольком АВС. Через прямую MN проводим


ником АВС. Через прямую MN проводим

горизонтально проецирующую плоскость g. Так как вспомогательная плоскость g горизонтально - проецирующая, то и горизонтальной проекцией плоскости g и треугольника АВС является прямая линия E'D'. Находим ее фронтальную проекцию E'D". Затем построим К",в которой E"D" пересекает M"N" и определяем ее горизонтальную проекцию К'. Определяем видимость отрезков МК и

KN используя конкурирующие точки

Рис.3.44 Рис.3.45 3.46

На рис.3.44 прямая АВ пересекает плоскость а общего положения. Проводим через прямую АВ горизонтально - проецирующую плоскость b, находим линию пересечения плоскости а и плоскости b (MN).

Определяем точку К" как точку пересечения M"N" и А"В". Находим точку К' и определяем видимость.

На рис. 3.45 плоскость а задана следами. Прямая, пересекающая плоскость a, является горизонталью, Через прямую АВ проводим горизонтальную плоскость b(b||Н). Плоскость р пересекает плоскость а по горизонтали NK, принадлежащей плоскости a Затем определяем видимость. На рис. 3.46 плоскость а задана следами; прямая АВ, пересекающая плоскость а, горизонтально - проецирующая, на плоскость Н она проецируется в точку и, следовательно, горизонтальная проекция точки пересечения прямой АВ и плоскости a¢) находится в этой точке.

 A'=B=K', Положение К" определяется при помощи горизонтали.

Пересечение двух плоскостей общего положения

Рассмотрим общий случай построения линии пересечения двух плоскостей (рис.3.47).

Рис. 3.47

Одна из пересекающихся плоскостей (b) задана двумя пере-секающимися прямыми (АВ Ç ВС). Вторая плоскость (g) задана двумя параллельными прямыми (DE ||FG). В результате взаимного пересечения плоскостей b и g получена прямая K1K2 (bÇg== K1K2). Для определения положения точек K1 и К2 возьмем две вспомогательные фронтально - проецирующие плоскости a1 и a2 пересекающие и плоскость b, и плоскость g. При пересечении плоскостью a1 плоскости b образуется прямая с проекциями 1"2" и 1¢2'. При пересечении плоскостью a1 плоскости g образуется прямая с проекциями 3"4" и 3'4'. Пересечение линий12 и 34 определяет первую точку K1 линии пересечения плоскостей b и g.

Введя фронтально-проецирующую плоскость a2, получаем в ее пересечении с плоскостями b и g прямые с проекциями 5 "б",5'б' и 7"8", 7'8'. Эти прямые, расположенные в плоскости a2,в

своем пересечении определяют вторую точку К2 линии пересечения b и g. Получив проекции K1" и К2" находим на следах a1v" и a2v"проекции K1" и К2". Проекции K1"К2¢¢ и K1'K2' являются проекциями искомой прямой пересечения плоскостей b и g.

3.9. Построение линии пересечения двух плоскостей по точкам пресечения прямых линий с плоскостью

Этот способ заключается в том, что находят точки пересечения двух прямых, принадлежащих одной из плоскостей, с другой плоскостью. Следовательно, необходимо уметь строить точку пересечения прямой с плоскостью общего положения (рис.3.43).

На рис. 3,48 дано построение линии пересечения двух треугольников АВС и DEF. Прямая K1K2 построена по точкам пересечения сторон АС и ВС треугольника АВС с плоскостью треугольника DEF Вспомогательная фронтально-проецирующая плоскость g1 проведенная через АС, пересекает треугольник DEF по прямой с проекциями 1."2" и 1'2'; в пересечении проекций А'С' и 1'2' получаем горизонтальную проекцию точки K1' - пересечения

 прямой АС и треугольника DEF. Затем строим фронтальную проекцию K1//

Рис.3.48

Вспомогательная фронтально-проецирующая плоскость g2, проведенная через ВС, пересекает треугольник DEF по прямой с проекциями 3"4" и 3'4', В пересечении проекций 3'4' и В'С' получаем горизонтальную проекцию точки К2 - пересечения прямой ВС и треугольника DEF. Затем строим фронтальную проекцию точки К2. Видимость на чертеже определяем методом конкурирующих точек (см, рис.3.36),

 

 


Релятивисткая механика Примеры решения задач