Начертательная геометрия Сопромат. Расчеты при выполнении курсового задания Техническая механика Лабораторные работы по сопротивлению материалов На главную

Начертательная геометрия примеры решения задач, лекции и конспекты

Построении в диметрической проекции плоских фигур.

Построим правильный шестиугольник в диметрической проекции.

Рисунок 11.16

По оси ox откладываются отрезки 01’ = 01 и 02’ = 02, а по оси oy – расстояние 03 и 04, уменьшенное в 2 раза /03’ и 04’/. Дальнейшие построения аналогичны построениям шестиугольника в изометрической проекции (рисунок 11.17).

Рисунок 11.17

Геометрические тела, имеющие квадратные поверхности, строятся преимущественно в прямоугольной диметрии (рис.11.12).

Построение окружности в диметрической проекции.

Окружности, лежащие в плоскостях, параллельных плоскостям проекции, проецируются на аксонометрическую плоскость проекций в эллипсы. Большая ось эллипсов равна 1,06 диаметра окружности, а малая ось эллипса – 0,35 Ø или 0,95 Ø.

Рассмотрим построение в прямоугольной диметрии окружности (рисунок 11.18).

В плоскости xoy через центр С1 проводим прямые, параллельные осям ox и oy и откладываем 1121 = 12,3’4’ = .

Рисунок 11.18

Два способа задания геометрических фигур: кинематический и статический. Кинематический способ основан на перемещении в пространстве точки или образующей линии по определенному закону. Закон перемещения задается направляющими элементами: точками, линиями или плоскостями. Совокупность образующей и направляющих называется определителем геометрической фигуры. Пример записи: “”. Здесь – название фигуры в общем случае, – образующая линия (точка с запятой), и  – направляющие линии и  – направляющая плоскость. Если характер образующей понятен из названия фигуры, то в скобках отражаются только направляющие элементы. Например: “Коническая поверхность общего вида ”. В этом случае из названия фигуры ясно, что образующей является прямая линия, а в скобках – только направляющие элементы: кривая линия и вершина конуса .

Направление большой оси эллипса перпендикулярно оси OZ и равно 1,06 Ø, малая ось перпендикулярна большой и равна 0,35 Ø. Аналогично строиться эллипс в плоскости YOZ. Во фронтальной плоскости XOZ большая ось эллипса перпендикулярна оси OY и равна 1,03 Ø, малая ось равна 0,95 Ø. По прямым параллельным осям OX и OZ, откладываю размер диаметра Ø (1222.3242), полученные точки соединяют плавной кривой.

Для упрощения построения эллипсы заменяют овалами. Построение овалов осуществляется различными способами. На рисунке 11.19 дано построение эллипсов по большой и малой осям. Построение понятно из чертежа.

Рисунок 11.19

Более удобен другой способ, при котором не требуется определение большой и малой осей эллипса (рисунок 11.20).

Рисунок 11.20

Разрез в аксонометрических проекциях.

При выполнении аксонометрических изображений сложных деталей, имеющие внутренние полости, применяют разрезы для выявления внутренних форм деталей. Их осуществляют двумя или тремя плоскостями, каждую из которых располагают параллельно координатной плоскости. Чаще всего секущие плоскости совпадают с плоскостями симметрии детали и соответствуют плоскостям разрезов, выполненных на чертеже детали. На аксонометрических проекциях не рекомендуется выполнять полный разрез, так как при этом теряется наглядность изображения. Обычно вырезают одну четвертую часть детали. Угол, образованный секущими плоскостями, всегда должен быть видимым.

Для определения наклона линии штриховки в каждой плоскости сечений поступают следующим образом. Строят аксонометрические проекции квадратов, лежащих в координатных плоскостях XOY, XOZ,YOZ, причем стороны квадратов параллельны и лежат на координатных осях X, Y, Z. Линии штриховки наносят параллельно диагоналям квадратов (рисунок 11.21, 11.22).

Рисунок 11.21 Рисунок 11.22

На рисунках 11.23, 11.24 показано направление штриховки прямоугольной изометрической проекции, на рисунках 11.25, 11.26 – в прямоугольной диметрической проекции.


Релятивисткая механика Примеры решения задач