Начертательная геометрия Сопромат. Расчеты при выполнении курсового задания Техническая механика Лабораторные работы по сопротивлению материалов На главную

Начертательная геометрия примеры решения задач, лекции и конспекты

Пересечение многогранника плоскостью

Цель пересечения многогранников – выяснить их конструктивные особенности, которые невозможно определить на обычных проекциях.

При пересечении многогранника плоскостью в сечении получается плоская фигура, ограниченная линиями пересечения секущей плоскости с гранями многогранника, т.е. с плоскостями.

Линия пересечения многогранника плоскостью определяется по точкам пересечения рёбер многогранника (метод рёбер) или по линиям пересечения граней многогранника с данной плоскостью (метод граней), т.е. задача сводиться к определению точек пересечения прямой с плоскостью (в первом случае) или к определению линий пересечения плоскостей.

Фигуру, полученную от пересечения многогранника плоскостью называют многоугольником (фигурой) сечения, иногда упрощенно, сечением (рис. 5.2 DЕF)

Если секущая плоскость параллельна плоскости проекций, то фигура сечения проецируется на эту плоскость проекций без искажения – в натуральную величину (рис. 5.1 123). В противном случае сечение проецируется с искажением, в частности и прямой (рис. 5.2). Поэтому для определения натуральной величины сечения необходимо применить один из методов преобразования проекций (замены плоскостей проекций, вращения или совмещения).

5.4. Пересечение многогранника прямой

Задачи на определение точек пересечения прямой линии с многогранником решают в соответствии с алгоритмом построения точки пересечения прямой с плоскостью. Выпуклые многогранники пересекаются прямой линией в двух точках (рис. 5.5 – т. т. K и L).

Рис. 5.5

На рис. 5.5 прямая М заключена во фронтально-проецирующую плоскость Т. На горизонтальной проекции простроена горизонтальная проекция сечения пирамиды этой плоскостью ( 112131), а также определены горизонтальные проекции точек пересечения прямой М со сторонами 123 К1 и L1. Фронтальные проекции этих точек и видимость прямой М определены путем ортогонального проецирования.

Взаимное пересечение многогранников

Что касается линии взаимного пересечения двух многогранников, то она определяется по точкам пересечения рёбер одного многогранника с гранями другого: это известная задача на определение точки пересечения прямой с плоскостью (рис 5.6), хотя возможен вариант построения линии пересечения граней многогранников , т.е. линии пересечения двух плоскостей.

Рис. 5.6

На рис. 5.6 приведен пример построения линии пересечения прямой четырехгранной призмы и трёхгранной пирамиды. При решении задачи используем алгоритм построения точек пересечения ребер пирамиды (AS, BS и CS) с гранями призмы. Точки 7 и 8 пресечения пирамиды с одним ребром призмы с помощью горизонтально-проецирующей плоскости Р, проведенной через вершину пирамиды S и вышеуказанное ребро призмы.

В общем случае два многогранника пересекаются по линии, являющейся пространственным замкнутым многоугольником.

Линиями пересечения двух выпуклых многогранников являются один или два пространственных многоугольника.

При частичном пересечении многогранников имеет место неполное проницание или врезка, а при полном – полное проницание.

Следует помнить, что проекции линии пересечения двух многогранников всегда (!) располагаются внутри контура наложения одноименных проекций многогранников.


Релятивисткая механика Примеры решения задач