Начертательная геометрия Сопромат. Расчеты при выполнении курсового задания Техническая механика Лабораторные работы по сопротивлению материалов На главную

Начертательная геометрия примеры решения задач, лекции и конспекты

Определение расстояния от точки до плоскости, между плоскостями

Расстояние от точки до плоскости определяется величиной отрезка перпендикуляра, опущенного из точки на плоскость.

Пример1_0пределить расстояние от точки А до фронтально проецирующей плоскости a (рис 7.18)

Через А¢ проводим горизонтальную проекцию перпендикуляра m¢^aн через А² - его фронтальную проекцию m²^av. Отмечаем точку M²=m²Çav. Так как [АМ]ôôV, то [А''М''] =ôAMô = d

Рис.7.18.

Пример2_0пределить расстояние от точки К до плоскости, заданной треугольником АВС (рис 7.19)


1 .Переводим плоскость треугольника АВС во фронтально- проецирующее положение. Для этого переходим от системы

; выбираем направление оси X1 ^h¢

2.Проецируем треугольник АВС на новую фронтальную плоскость V1 (плоскость треугольника АВС спроецируется в [С²²1];

3.Проецируем на ту же плоскость К® K²1;

4.Через точку К i проводим (К²1M²1)^²1 В²1]. Искомое расстояние d=[К²²1]

Расстояние между плоскостями определяется величиной отрезка перпендикуляра, опущенного из точки, взятой на одной плоскости, на другую плоскость.

Исходя из определения, алгоритм решения задачи по нахождению расстояния между плоскостями a и bможет быть выполнен:

1. Взять в плоскости a произвольную точку А (АÎa);

2. Из точки А опустить перпендикуляр m на плоскость b(m'А); m^b;

3. Найти точку М пересечения перпендикуляра m с плоскостью b (M=mÇb);

4. Определить действительную величину [AM]. ( d-=÷AM÷), На практике целесообразно, прежде всего перевести плоскость в проецирующее положение. Этим упрощается решение задачи. Пример: Определить расстояние между плоскостями а и р (рис.7.20).

Решение: Переходим от системы Х( V/H) —>X1( V1/H). По отношению к новой плоскости V1 плоскости a и b занимают проецирующее положение, поэтому расстояние d между их фронтальными следами a¢n и b¢n является искомым.

 Рис.7.20.

 


Релятивисткая механика Примеры решения задач