Начертательная геометрия Сопромат. Расчеты при выполнении курсового задания Техническая механика Лабораторные работы по сопротивлению материалов На главную

Начертательная геометрия примеры решения задач, лекции и конспекты

ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТИ С ПЛОСКОСТЯМИ

Общие сведения о пересечении поверхности плоскостью.

При пересечении любого тела е плоскостью получается некоторого вида плоская фигура, называемая сечением. Под сечением понимают ту часть секущей плоскости, которая находится внутри рассеченного тела и ограничена линией сечения. Линией сечения тела плоскостью является контур этого сечения,

Плоскости, с помощью которых получается сечение, называют секущими.

Фигура сечения многогранника — многоугольник, число сторон которого равно числу граней, пересекаемых плоскостью. Вершинами этого многоугольника являются точки пересечения ребер с секущей плоскостью, а сторонами — линии пересечения граней с секущей плоскостью. Плоские сечения многогранников — замкнутые фигуры.

В пересечении кривой поверхности плоскостью в общем случае получается плоская кривая линия (окружность, эллипс и т. п.). При пересечении линейчатых поверхностей  плоскостями могут получаться, в частности, и прямые линии, если секущая плоскость направлена вдоль образующих (цилиндра, конуса и др.).

Основным способом построения точек линии пересечения поверхности с плоскостью является способ вспомогательных секущих плоскостей. Вспомогательная плоскость пересекает секущую плоскость по прямой, а заданную поверхность по некоторой кривой или прямой линии. Точки пересечения этих линий и будут искомыми точками, принадлежащими поверхности и секущей плоскости.

Построение проекций линии сечения поверхности плоскостью значительно упрощается, если секущая плоскость проецирующая. В этом случае одна из проекций линии сечения уже имеется на чертеже: она совпадает с проекцией плоскости. Остается лишь найти другие проекции этой линии.

6.2.Пересечение пирамиды с плоскостью

Плоскость пересекает пирамиду по многоугольнику. Если плоскость параллельна основанию пирамиды, в сечении получается фигура, подобная основанию. При построении линии пересечения

пирамиды с плоскостью определяют точки пересечения ее ребер с данной плоскостью или строят линии пересечения граней пирамиды с этой плоскостью.

На рис.6.1 показано построение проекции линии сечения пирамиды фронтально-проецирующей плоскостью a Фронтальная проекция линии сечения совпадает с фронтальной проекцией av секущей плоскости. Горизонтальная и профильная проекции сечения находятся с помощью линий связи проведённых из точек 1² ... б² до пересечения с горизонтальными проекциями соответствующих рёбер пирамиды.

Рис 6.1

Натуральная величина сечения определена способом замены плоскостей проекции. Так как сечение имеет фронтальную ось симметрии, при построении его натурального вида эта ось проведена параллельно av.

Для построения точек 1о...6о данного сечения использованы их размеры у.

6.3. Пересечение призмы с плоскостью

При построении линии пересечения призмы с плоскостью определяют точки пересечения ее ребер с данной плоскостью. Эту линию можно также построить, определяя линии пересечения отдельных граней призмы с плоскостью. В результате пересечения поверхности призмы плоскостью может быть получен прямоугольник (рис.6.2а ), если эта плоскость параллельна боковым рёбрам призмы, или различного вида многугольники (рис.6.2 б,в.), если плоскость не па параллельна им


На рис 6.3 показано построение проекций линии сечения

треугольной призмы фронтально-проецирующей плоскостью a

В сечении получен четырёхугольник ABCD, фронтальная проекция которого совпадает с фронтальной проекцией av секущей плоскости. Точки А,В являются точками пересечения боковых рёбер призмы с плоскостью a, а отрезок CD - линия пересечения верхнего основания призмы с этой плоскостью.

Натуральный вид сечения Ао Во Со Do построен способом замены плоскостей проекций, для этого введена новая плоскость проекций,

 


параллельная плоскости о, и на эту плоскость спроецированы точкиA,B,C,D. Из проекций А², В", С² D² проведены линии связи, перпендикулярные к следу av, и на свободном поле чертежа проведена линия Ао Do, параллельная av. Эта линия принята за базу отсчёта размеров у на фигуре сечения потому, что прямая AD принадлежит фронтальной плоскости задней грани призмы, которую принимают за базовую. Точки Во и Со построены с помощью размеров ув и ус.

6.4. Пересечение цилиндра с плоскостью

При пересечении цилиндра плоскостью фигура сечения будет зависеть от угла наклона плоскости по отношению к оси вращения.

Если секущая плоскость параллельна оси вращения (рис 6.4 а ), в сечении цилиндра получится прямоугольник. Если плоскость перпендикулярна оси вращения (рис 6.4 , б), в сечении получится окружность.

Когда секущая плоскость расположена под углом к оси вращения цилиндра, в сечении получается эллипс (рис 6.4 в) или его часть ( рис 6.4', г).

Рис 6.4

На рис 6.5 показано построение проекций линии сечения цилиндра фронтально - проецирующей плоскостью a (av).

Линией пересечения является эллипс. Большая ось эллипса - АВ = А' 'В'/, малая ось CD = С¢D¢ - диаметр цилиндра.

Ось цилиндра и вся цилиндрическая поверхность перпендикулярны плоскости Н. Следовательно, все точки цилиндрической поверхности, в том числе и линия пересечения ее с плоскостью а(а ) проецируется на плоскость Н в окружность, на ней отмечают горизонтальные проекции точек А¢, 1¢, С¢, 2¢, В', D', 2', 1' эллипса, расположив их равномерно по окружности. В проекционной связи строят фронтальные проекции А², \", С², В², 2//, В² на фронтальном следе av секущей плоскости.

Профильные проекции точек строят по их горизонтальной и фронтальной проекциям на линиях связи. Профильная проекция линии пересечения цилиндра с секущей плоскостью - эллипс, большая ось C²¢D²¢ которого в данном случае равна диаметру цилиндра , а малая ось А²¢В²¢ - профильная проекция отрезка АВ. Натуральный вид сечения построен способом замены плоскостей проекций на плоскости Т, перпендикулярной плоскости V. Большая ось эллипса - отрезок АоВо @ A2B2, малая - отрезок CoDo @ d. Эллипс может быть построен по его большой и малой осям.


Релятивисткая механика Примеры решения задач