Машиностроительное конструирование Начертательная геометрия Требования к чертежам деталей Выполнение рабочих чертежей деталей

Машиностроительное конструирование

Конструкции и деталей волновых передач

Гибкие колеса выполняют в виде стакана (см. рис. 6.3. а и б) или цилиндрической оболочки (рис. 6.7). у которой на одном конце нарезаны зубья для зацепления с жестким колесом, а на другом – зубья шлицевого соединения. Соотношения между размерами в зависимости от h и D указаны на рис. 6.7. Конструкция гибкого колеса с двумя зубчатыми венцами приведена на рис. 6.8: колесо симметрично, но зубчатые венцы имеют разные числа зубьев и разные модули. Ширина канавки между венцами служит для выхода зуборезного инструмента.

Рис. 6.7. Конструкция гибкого колеса в виде цилиндрической оболочки – трубы

Рис. 6.8. Конструкция гибкого колеса с Рис. 6.9. Конструкция кулачкового

двумя зубчатыми венцами генератора

 1 – гибкий подшипник; 2 – гибкое колесо;

 3 - кулачок

Гибкие колеса изготовляют из улучшенных сталей с твер­достью НВ 300 — 350 и пределом выносливости  s-1 » 350 МПа.

Генераторы волн деформации. Кулачковые генераторы (рис. 6.9) получили широкое распространение в передачах раз­личных областей машиностроения. Они лучше других генера­торов сохраняют под нагрузкой заданный профиль гибкого колеса. Профиль кулачка в полярной системе координат опре­деляется по формуле

 r = 0,5d + mKw (k1 cos 2j - k2 cos 6j), (6.31)

где d — внутренний диаметр гибкого подшипника: j — полярный угол, отсчитываемый от большой оси деформации; Kw — коэффициент радиальной деформации гибкого колеса, Kw = 1 ¸ 1,2; k1 и k2 – корректирующие коэффициенты (табл. 6.4).

6.4. Значения корректируюших коэффициентов k1 и k2 

в зависимости от передаточного отношения ihk(n)

Коэффициенты

ihk(n)

50

75

100

200

300

400

k1

k2

0,979

0,079

0,961

0,068

0,951

0,065

0,942

0,057

0,936

0,53

0,932

0,52

Основные размеры гибких шариковых подшипников, уста­навливаемых между кулачком и гибким колесом, приведены в приложении, табл. П9. Внутренний диаметр гибкого колеса в месте посадки наружного кольца подшипника обрабатывают с отклонениями Н7. Посадка внутреннего кольца гибкого подшипника на кулачок выполняется с натягом, близким к нулю. Соответственно профиль кулачка должен выполняться с отклонениями js 6 или js 7.

Роликовые генераторы (рис. 6.10) просты в изготовлении, но не сохраняют под нагрузкой заданную форму гибкого колеса. Для предохранения зубчатого венца от раскатывания роликами и для увеличения его жесткости под венец запрессовывают подкладное кольцо. Материал кольца – сталь с твердостью HRC 50-58; диаметр роликов следует выбиратть наибольшим по условию их размещения. Оси роликов и щеки генератоа должны быть достаточно жесткими в радиальном направлении. Максимальный прогиб не должен превышать 0,05т.

Рис. 6.10. Конструкция роликового генератора:

1 — ролик; 2 — гибкое колесо; 3 — подкладное кольцо

Дисковые генераторы (рис. 6.11) применяют чаще роликов, так как они сохраняют в нагруженной передаче заданную форму деформации гибкого колеса на большем участке, чем роликовые, имеют меньший  момент инерции, чем

Рис. 6.11. Конструкция дисковою генератора без подкладного кольца:

1 - диск; 2 - гибкое колесо: 3 - эксцентричные втулки

кулачковые и роликовые. Диаметр диска

 

где dk — диаметр подкладного кольца; w — максимальное ра­диальное упругое перемещение гибкого колеса. Для двухволновых передач при k =1 w » т; е — эксцентриситет дисков, е = (3,1¸3,7) w, меньшее значение — для тяжелонагруженных пе­редач и передач с малыми передаточными отношениями, большее — для легконагруженных и с большими передаточ­ными отношениями.

Подшипники дисков насаживают непосредственно на экс­центричные шейки вала или на эксцентричные втулки, напрес­сованные на обычный вал. Для передачи вращающего момента с вала на втулки применяют шпоночные или шлицевые соеди­нения. Радиальная нагрузка на подшипники одного диска (рис. 6.12)

Частота вращения диска относительно своей оси

где nh – частота вращения генератора; е – эксцентриситет; dд – наружный диаметр диска.

Рис. 6.12. Силы, действующие на подшипники дисков генератора

Рис. 6.13. Конструкции жестких неподвижных колес:

1 – колесо; 2 – корпус; 3 – штифт; 4 – крышка

Жесткие колеса. Толщина жесткого колеса (рис. 6.13) должна быть такой, чтобы его максимальная деформация под нагрузкой не превышала 0,05т. Это условие соблюдается при толщине венца под зубьями h1 ³ 0,18 d1 . Для снижения требо­ваний к точности выполнения осевых размеров венцы гибкого и жесткого колес делают разной ширины. Более широким — венец колеса с большей твердостью рабочих поверхностей зубьев. Жесткие колеса изготовляют из сталей 40Х, 40ХН, 30ХГСА с термической обработкой до твердости НВ 240-290. Конструкции неподвижных жестких колес приведены на рис. 6.13, подвижных — на рис. 6.5 и 6.6.

Рис. 6.14. Схема смазывания зацепления и гибкого подшипника вертикального редуктора

с помощью маслоподъемного конуса:

1 – жесткое колесо; 2 – гибкое колесо; 3 – отверстия для прохода масла; 4 – зазор для прохода

масла и самоустановки генератора; h - генератор

Система смазывания. Для волновых редукторов общего назначения применяют жидкие минеральные масла. Продукты износа рекомендуется улавливать магнитными сливными проб­ками. В редукторах с кулачковыми генераторами при гори­зонтальном расположении центральной оси уровень масла дол­жен доходить до центра нижнего шарика гибкого подшипника генератора. При вертикальном расположении оси надо устанав­ливать маслоподающий конус (рис. 6.14). В тихоходных пере­дачах (nh < 960 об/мин) можно полностью заливать редуктор маслом.

В случае невозможности применения жидких масел (при низких температурах) можно применять пластичные смазочные материалы, закладываемые при сборке редуктора в подшип­ники и в зацепление или подаваемые к смазочным точкам пресс-масленками.


На главную