Беспроводные наушники    AirBeats

Беспроводные наушники AirBeats

Гуманитарные науки

Гуманитарные науки

Биржа студенческих   работ. Контрольные, курсовые, рефераты.

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Начертательная геометрия, сопромат. Примеры выполнения курсовых, лабораторных работ

Сопромат.
Расчеты при выполнении курсового задания
  • Расчет трехопорной рамы
  • Статически неопределимый стержень кусочно-постоянного сечения
  • Расчет систем стержней
  • Расчет стержневой системы по предельному состоянию
  • Геометрические характеристики сечений
  • Круг Мора моментов инерции сечений
  • Геометрические характеристики прокатных профилей
  • Расчет трехопорных рам
  • Характерные особенности эпюр внутренних усилий
  • Порядок расчета рамы
  • Пример расчета трехопорной рамы
  • Вычисляем  значения внутренних усилий
  • Строим эпюры внутренних усилий
  • Задания на выполнение курсовых работ по сопротивлению материалов
  • Исследовать рабочую систему механизма редуктора
  • Составляем простую модель технической системы
  • Зубчатые механизмы
  • Достоинства косозубых передач:
  • Геометрические параметры цилиндрических прямозубых колес и передач
  • Применение зубчатых передач в приборостроении.
  • Связи и реакции связей
  • Подвижный шарнир
  • Плоская система сходящихся сил
  • Определение равнодействующей системы сил аналитическим способом
  • Пара сил и момент силы относительно точки
  • Плоская система произвольно расположенных сил
  • Балочные системы.
  • Пространственная система сил
  • Основные понятия кинематики.
  • Простейшие движения твердого тела
  • Понятие о трении. Виды трения
  • Работа и мощность
  • Сопротивление материалов
  • Растяжение и сжатие.
  • Примеры решения задач
  • Механические испытания, механические характеристики.
  • Геометрические характеристики плоских сечений
  • Деформации при кручении
  • Напряжения и деформации при кручении
  • Классификация видов изгиба.
  • Нормальные напряжения при изгибе.
  • Расчет бруса круглого поперечного сечения
  • Сопротивление усталости
  • Лабораторные работы
    по сопротивлению материалов
      Испытание на растяжение образца из низкоуглеродистой стали
  • Диаграмма растяжения
  • Диаграмма условных напряжений
  • Общие сведения о подшибниках качения
  • Классификация подшипников качения
  • Основные типы подшипников качения
  • Основные виды разрушения и критерии работоспособности подшипников качения
  • Монтаж подшипников качения
  • Методы проведения лабораторной работы
  • Экспериментальное исследование характеристик подшипников
  • Равноускоренное движение
  • Метод наименьших квадратов
  • Изучение законы движения центра масс механической системы
  • Определение коэффициента трения качения
  • Основы конструирования
  • Транспортные машины
  • Изучение конструкции цилиндрического двухступенчатого редуктора
  • Разборка редуктора и ознакомление с конструкцией и назначением отдельных узлов
  • Исследование характеристик ременной передачи
  • Скольжение ремня
  • Резьбовые соединения
  • Конструкции шпилек
  • Подшибники качения
  • Критерии работоспособности подшипников качения
  • Испытания материалов и определение их физико-механических характеристик
  • Влияние повторных нагрузок на механические свойства материалов
  • Испытание на сжатие образцов из различных материалов
  • Испытание на кручение образца из малоуглеродистой стали
  • Испытание материалов на выносливость
  • Снижают влияние концентрации напряжений двумя путями:
  • Испытание различных материалов на ударную вязкость
  • Изучение напряженно-деформированного состояния элементов конструкций
  • Тарировочный коэффициент определяют следующим образом
  • Определение напряжений при внецентренном растяжении бруса
  • Определение напряжений в стенке тонкостенного сосуда
  • Определение деформаций при прямом поперечном изгибе балки
  • Определение деформаций при косом изгибе балки
  • Определение момента в защемлении статически неопределимой балки
  • Проверка интеграла Мора
  • Проверка теории изгибающего удара
  • Определение критической силы при продольном изгибе
  • Обработка и предоставления результатов измерений
  • Испытание на сжатие образцов из пластичных и хрупких материалов
  • Математика
    Решение типового варианта контрольной
    работы по математике
    Школьный курс лекций
    Предел последовательности
    Декартова система координат
    Квадратный трехчлен
    Дробно-линейная функция
    Графические методы решения задач
    Система уравнений с двумя переменными
    Метод Гаусса
    Математический анализ
    Векторная алгебра и аналитическая геометрия
     

    Начертательная геометрия примеры решения задач, лекции и конспекты

    • В разработанном курсе лекций рассмотрены основные разделы курса "Начертательная геометрия". Лекции включают в себя сведения о методах проецирования, о образовании проекций точки, прямой линии, плоскости и их взаимном положении. Рассмотрены способы преобразования чертежа, построение многогранников и кривых поверхностей, пересечение кривых и гранных поверхностей прямой линией и плоскостью, Даны сведения об аксонометрических проекциях.
    • Виды проецирования Существует несколько видов проецирования. Проекции центральные, - когда задается плоскость про-екции и центр проекции точки, не лежащей в этой плоскости
    • Проецирование отрезка прямой линии Проецирование прямой линии на две и три плоскости проекции. Прямая линия в пространстве вполне определяется положением двух любых точек, принадлежащих этой прямой (траектория перемещения точки)
    • Задание и изображение плоскости на чертеже Плоскость - это простейшая поверхность. Положение плоскости в пространстве определяется: а) тремяточками, не лежащими на одной прямой линии, б) прямой иточкой, не принадлежащей данной прямой, в) двумя пересекающимися прямыми, г) двумя параллельными прямыми, д) любой плоской фигурой.
    • Положение плоскостей относительно плоскостей проекций Возможны следующие положения плоскости относительно плоскостей проекций H,V,W:
    • Построение линии пересечения двух плоскостей Прямая линия, получаемая при взаимном пересечении двухплоскостей, определяется двумя точками, каждая из которых одновременно принадлежит обеим плоскостям.
    • Способы преобразования чертежа Задание прямых линии и плоских фигур в частных положениях относительно плоскостей проекций значительно упрощает построения и решение задач, позволяет получить ответ или не- посредственно по данному чертежу, или при помощи простейших построений. Такое частное взаимное расположение прямых линий, плоских фигур и плоскостей проекций может быть обеспечено преобразованием чертежа
    • Способ вращения вокруг оси, перпендикулярной к плоскости проекций При вращении вокруг некоторой, неподвижной прямой i (ось вращения) каждая точка вращаемой фигуры перемещается в плоскости, перпендикулярной к оси вращения (плоскость вращения). При этом точка перемещается по окружности, центр которой находится в точке пересечения оси с плоскостью вращения (ценmр вращения).
    • Способ параллельного перемещения При параллельном перемещении траектории перемещения каждой точки геометрической фигуры находятся в параллельных плоскостях, причем эти плоскости (носители траекторий) параллельны плоскостям проекций. Траектория перемещения – произвольная плоская линия.
    • В начертательной геометрии пользуются кинематическим способом образования поверхностей. При этом способе поверхность рассматривается как совокупность всех последовательных положений некоторой линии, перемещающейся в пространстве по определенному закону.
    • Поверхсности вращения Поверхностью вращения называется поверхность, которая описывается какой- либо кривой, в частности прямой,(образующей) при ее вращении вокруг неподвижной оси.
    • Пересечение поверхностей,  когда одна из них проецирующая К проецирующим поверхностям относятся: 1) цилиндр, если его ось перпендикулярна плоскости проекций; 2) призма, если ребра призмы перпендикулярны плоскости проекций, Проецирующая поверхность проецируется в линию на плоскость проекций. Все точки и линии, принадлежащие боковой поверхности проецирующего цилиндра или проецирующей призме проецируются в линию на ту плоскость, которой ось цилиндра или ребро призмы перпендикулярно.
    • Способ вспомогательных секущих сфер с постоянным центром Известно, что если центр сферы находится на оси какой- нибудь поверхности вращения, то сфера соосна с поверхностью вращения и в их пересечении получаются окружности AB,CD, EF, КL
    • Общие сведения о пересечении поверхности плоскостью. При пересечении любого тела е плоскостью получается некоторого вида плоская фигура, называемая сечением. Под сечением понимают ту часть секущей плоскости, которая находится внутри рассеченного тела и ограничена линией сечения. Линией сечения тела плоскостью является контур этого сечения
    • Пересечение конуса с плоскостью В зависимости от направления секущей плоскости в сечении конуса вращения могут получиться различные линии, называемые вершину конуса, в его сечении получается пара прямых - образующие конуса ( рис 6.6, а). В результате пересечения конуса плоскостью, перпендикулярной к оси конуса, получается окружность
    • Метрические задачи Метрическими называются задачи, в которых приходится определять значения измеряемых величин - измерять величину угла между' двумя прямыми и расстояние между двумя точками. К метрическим относятся также задачи на построение угла и отрезка с наперед заданным соответственно градусной и линейной величины.
    • Определение действительной величины угля между прямой и плоскостью. Между двумя плоскостями Углом между прямой и плоскостью называется угол между этой прямой и ее проекцией на данную плоскость (прямая не перпендикулярна плоскости).
    • Определение расстояния от точки до плоскости, между плоскостями Расстояние от точки до плоскости определяется величиной отрезка перпендикуляра, опущенного из точки на плоскость.
    • Для изготовления деталей, получаемых путем свертывания и изгиба листового или полосового материала, необходимо иметь заготовки - развертки будущих деталей. Разверткой (выкройкой) поверхности тела называется плоская фигура, полученная путем совмещения всех точек данной поверхности с плоскостью без разрывов и складок.
    • Аксонометрические проекции Во многих случаях при выполнении технических чертежей оказывается необходимым наряду с комплексным чертежом оригинала давать более наглядное изображение, обладающее свойством обратимости.
    • Окружность в прямоугольной изометрии Окружности, вписанные в грани куба, проецируются в эллипсы, В прямоугольной изометрии все три эллипса одинаковы по форме, равны друг другу, но расположены различно
    • Машинная графика Одно из замечательных достижений человеческого гения в последние десятилетия -быстрое развитие электроники и вычислительной техники.
    • Проекции точки. Метод проецирования. Для построения изображения предметов на плоскости пользуютсь методом проецирования. Слово «проекция» - латинское, от глагола projecere, что в переводе означает «бросать вперед».
    • Проецирование точки на две плоскости проекций. Четверти пространства Две взаимно перпендикулярные плоскости проекций П1 – горизонтальная плоскость проекций, П2 – фронтальная плоскость проекций делят пространство на четыре квадранта (четверти)
    • Проекции точки на три плоскости проекций. Октанты пространства В начертательной геометрии принято от пространственного изображения точки и ее проекций переходить к плоскому, или комплексному, чертежу, образованному вращением плоскости проекций вокруг осей проекций
    • Точки проекций общего и частного положения. Наиболее удобной для фиксирования положения геометрической фигуры в пространстве является декартова система координат, состоящая из трех взаимно перпендикулярных плоскостей
    • Проекции прямой Проецирование прямой на три плоскости проекции. Прямую можно рассматривать как результат пересечения двух плоскостей
    • Положение прямой относительно плоскости проекций. На рис 1.5. изображен параллелепипед со срезанной вершиной и произвольная треугольная пирамида. Ребра параллелепипеда и пирамиды занимают различные положения в пространстве относительно плоскостей проекций. Чтобы строить и читать чертежи, нужно уметь анализировать положения прямой. По своему положению в пространстве прямые распределяются на прямые частного и прямые общего положения.
    • Определение натуральной величины отрезка Если отрезок прямой занимает общее положение, то ни на одной основной плоскости проекций нельзя определить его истинную длину
    • Пересекающие прямые. Если две прямые в пространстве пересекаются, то их одноименные проекции также пересекаются в точках К1 иК2, лежащих на общей линии связи.
    • Проекции плоскости Способы задания плоскости на эпюре Из курса элементарной геометрии известно, что через три точки не лежащие на одной прямой можно провести плоскость и при том только одну.
    • Принадлежность прямой и точки заданной плоскости Прямая принадлежит плоскости, если две её точки принадлежат этой плоскости
    • Главные линии плоскости В плоскости можно расположить бесчисленное количество прямых, среди которых будут линии уровня плоскости, т.е. прямые, параллельные плоскостям проекций, и прямые, перпендикулярные к этим линиям уровня, так называемые линии наибольшего уклона плоскости. Такие прямые называются главными (или особыми) линиями плоскости. К первым относятся горизонтальные линии плоскости (горизонтали плоскости), а также фронтальные и профильные (фронтали плоскости, профильные прямые плоскости).
    • Построение точки пересечения прямой и плоскости Прямая линия в пространстве может принадлежать плоскости (этот случай был рассмотрен ранее в пункте 3.4 настоящей главы), а также быть параллельной плоскости или пересекать её. При пересечении прямой линии с плоскостью следует выделить частный случай, когда прямая перпендикулярна плоскости. Первый случай был разобран в пункте 3.4, в котором рассматривалась одна из основных графических операций – построение линий, принадлежащих плоскости.
    • Параллельность прямой и плоскости При решении вопроса параллельности прямой линии и плоскости необходимо опираться на известное положение стереометрии: прямая параллельна плоскости, если она параллельна одной из прямых, лежащих в этой плоскости.
    • Параллельность плоскостей Рассмотрим случай взаимной параллельности плоскостей. Если плоскости параллельны, то всегда в каждой из них можно построить по две пересекающиеся между собой прямые линии так, чтобы прямые одной плоскости были соответственно параллельны двум прямым другой плоскости
    • Примеры позиционных и метрических задач на плоскость Пример. В плоскости, заданной треугольником АВС, построить точку D
    • Пример. В плоскости, заданной двумя параллельными прямыми АВ и CD, провести фронталь на расстоянии 15 мм от фронтальной плоскости проекций
    • Методы преобразования комплексного чертежа (эпюра Монжа) Четыре основных задачи на преобразование При разработке чертежей объектов необходимо давать наиболее выгодное изображение объекта в целом или его исследуемых элементов. Этого можно достичь, если прямые линии, плоские фигуры (основания, грани, ребра, оси) геометрических тел находятся в частном положении, чего можно достигнуть путем построения новых дополнительных проекций, исходя из двух заданных. Эти дополнительные проекции дают либо вырожденные проекции отдельных элементов, либо эти элементы в натуральную величину. Так вот построение дополнительных проекций называют преобразованием эпюра (чертежа).
    • Приведение отрезка прямой АВ общего положения в проецирующее положение
    • Метод плоско-параллельного перемещения Этот метод является разновидностью метода вращения. Как известно, при вращении некоторой точки вокруг своей оси она описывает окружность, расположенную в плоскости, перпендикулярной оси вращения
    • Многогранники Задание многогранников на эпюре Монжа (общие положения) Многие пространственные фигуры представлены в виде многогранников – замкнутых пространственных фигур, ограниченных плоскими многоугольниками. Вершины и стороны многоугольников являются вершинами и ребрами многогранника, при этом, если все его вершины и ребра находятся по одну сторону плоскости любой из его граней, то многогранник называется выпуклым, а все его грани являются выпуклыми многоугольниками.
    • Пересечение многогранника плоскостью Цель пересечения многогранников – выяснить их конструктивные особенности, которые невозможно определить на обычных проекциях.
    • Пересечение многогранников с кривой поверхностью Линия пересечения многогранника с кривой поверхностью состоит из плоских кривых, каждая из которых получается в результате сечения кривой поверхности одной из граней многогранника. Точки, в которых эти плоские кривые соединяются друг с другом, являются точками пересечения ребер многогранника с кривой поверхностью.
    • Обобщенные позиционные задачи. Пересечение кривой поверхности плоскостью. В сечении поверхности плоскостью получается плоская линия, которую строят по отдельным точкам.
    • Построить проекции линии пересечения плоскость Т с поверхностью цилиндра. Проводим через ось цилиндра горизонтально – проецирующую плоскость R1 перпендикулярную к плоскости Т1 плоскость R пересекает поверхность цилиндра по образующим, а плоскость Т – по прямой (N1M1;N2M2); на их пересечении получаем низшую точку (1) и высшую точку (2) линий пересечения.
    • Пример. Найти точки пересечения прямой АВ с поверхностью конуса. Проведем через прямую АВ вспомогательную плоскость ABS, проходящую через вершину конуса. Соединим прямыми концы отрезка АВ (или его промежуточные точки) с проекциями вершины конуса и найдем горизонтальные следы прямых SA и SB.
    • Касательные плоскости. Построение плоскости, касательной к кривой поверхности. Плоскостью, касательной к поверхности, называется плоскость, определяемая двумя прямыми, касательными к двум пересекающимся линиям, принадлежащим этой поверхности.
    • Касательные плоскости к линейчатым поверхностям с параболическими точками. Линейчатая поверхность с параболическими точками – это конус и цилиндр, каркас которых множество прямых – образующих.
    • Касательные плоскости к не линейчатым поверхностям с эллиптическими точками. Для построения касательной плоскости в заданной точке поверхности вращения, прежде всего, необходимо через заданную точку провести по поверхности две кривые линии. Касательные прямые к ним и определяют искомую касательную плоскость.
    • Касательные плоскости к линейчатым поверхностям с гиперболическими точками. У не развертывающихся линейчатых поверхностей гиперболического гиперболоида или однополостного гиперболоида - через каждую точку поверхности проходят две образующие, принадлежащие к различным семействам.
    • Пример. Построить на горизонтальной проекции очерк конуса, ось которого i параллельна плоскости П2 и наклонена к плоскости П1.
    • Аксонометрические проекции. Аксонометрические изображения широко применяются благодаря хорошей наглядности и простоте построения.
    • Треугольник следов и его свойства. Теорема Польке
    • Прямоугольная изометрия В этом виде аксонометрии все углы между осями равны 120 градусов , а все показатели искажения равно 0,82
    • Построение аксонометрических изображений. Построение в изометрической проекции плоских фигур.
    • Построении в диметрической проекции плоских фигур. Построим правильный шестиугольник в диметрической проекции.
    • Пример штриховки в четверти выреза детали
    • Способы сечений. По данному комплексному чертежу предмета сначала строят аксонометрические проекции фигур сечения, затем дочерчивают части изображения предмета, расположенные за секущими плоскостями. Второй способ упрощает построение, освобождает чертеж от лишних линий
    • Пересечение поверхностей призм и пирамид. В приемах построения проекции линии пересечения двух прямых призм много общего с построением линий пересечения двух цилиндров.
    • Тени от геометрических тел. От любого геометрического тела можно построит в той или иной аксонометрической проекции падающую тень, а на самом теле найти его собственную тень
    • Геометрические основы теории теней При оформлении чертежей фасадов зданий или других архитектурных сооружений возникает необходимость придать изображаемому объекту объемность, рельефность форм, подчеркнуть соотношение пропорций отдельных частей, т.е. придать чертежу наглядность, выразительность.
    • Падающая тень от прямой линии состоит из падающих теней от всех ее точек. Совокупность лучей, проходящих через все точки прямой, в пространстве образует лучевую, (световую) плоскость. Поэтому тень от прямой линии есть прямая пересечения лучевой плоскости с плоскостью, на которую падает тень
    • При построении падающей тени от плоской фигуры считают, что плоская фигура непрозрачна. Построение падающей тени от любой плоской фигуры сводится к построению падающих теней всех ее точек.
    • Метод обратных лучей
    • Собственные и падающие тени на фасадах зданий Представление о внешнем виде здания в основном создается по чертежу фасада. Поэтому рассмотрим примеры построения теней от различных элементов фасада, используя те же приемы, что и при построении теней геометрических тел

    Дифференциальное исчисление функции одной переменной

    • Производная Основные понятия Пусть дана функция y = f(x). Рассмотрим два значения ее аргумента: исходное х0 и новое х. Разности = х-х0 и D y = f(x)-f(x0) = y-y0 называются соответственно приращением аргумента и приращением функции в точке х0. Теорема ( о связи дифференцируемости и непрерывности). Если функция у = f(x) дифференцируема в точке х0, то она непрерывна в этой точке.
    • Вычисление производной Формулы вычисления производной некоторых элементарных функций получены в курсе средней школы
    • Производная обратной функции Теорема. Пусть функция х = f(y) монотонна и дифференцируема в некотором интервале (a, b) и имеет в точке у этого интервала производную f'(y), не равную нулю. Примеры. Найти производную функции.
    • Производная степенной функции с любым действительным показателем Известно, что (xn)' = nxn-1 для натурального n. Пусть теперь n любое дейст­вительное число и х>0. Справедливо тождество xn = enlnx. Тогда у = enlnx – сложная функция и ее производная вычисляется следующим образом: y' = (enlnx)' = enlnx(nlnx)' = enlnx =  xn = nxn-1.
    • Производные высших порядков Предположим, что функция y = f(x) дифференцируема в некотором интер­вале (а, в). Тогда ее производная f'(x) в этом интервале является функцией х. Пусть эта функция также имеет производную в (а, в). Эта производная называется второй производной или производной второго порядка функции y = f(x)и обозначается y'' или f''(x).
    • Дифференцирование функций, заданных параметрически Если функция y = f(x), определенная на некотором интервале (а,в), такая, что уравнение (1) при подстановке в него вместо у выражения f(x) обращается в тождество, то говорят, что уравнение (1) задает функцию y = f(x) неявно или что функция y = f(x) есть неявная функция.
    • Дифференцирование функций, заданных неявно Если функция y = f(x), определенная на некотором интервале (а,в), такая, что уравнение (1) при подстановке в него вместо у выражения f(x) обращается в тождество, то говорят, что уравнение (1) задает функцию y = f(x) неявно или что функция y = f(x) есть неявная функция. Пример
    • Логарифмическое дифференцирование Функция вида y = [u(x)]v(x) называется степенно – показательной. Для вычисления ее производной (при условии, что у' существует), нужно прологарифмировать функцию по любому основанию (обычно по основанию е). Затем нужно вычислить производную полученной неявной функции.
    • Дифференциал функции Рассмотрим функцию у = х3. Дадим некоторому значению аргумента х ¹ 0 приращение ¹ 0, тогда функция получит соответствующее приращение Dу. Вычислим его.
    • Теорема о связи между существованием производной и существованием дифференциала. Для того, чтобы функция y = f(x) имела в точке х дифференциал, необходимо и достаточно, чтобы она имела в этой точке производную.
    • Свойства дифференциала Это свойство дифференциала сложной функции называется инвариантностью формы дифференциала.
    • Дифференциалы высших порядков Дифференциал от дифференциала данной функции y = f(x) называется ее вторым дифференциалом или дифференциалом второго порядка и обозначается символом d2у или d2 f(x). Таким образом, по определению d2у = d().
    • Некоторые теоремы о дифференцируемых функциях
    • Теорема Ферма Пусть функция y = f(x) определена в интервале (а, в) и принимает в точке с этого интервала наибольшее или наименьшее на (а, в) значение. Если существует f'(с), то f'(с) = 0.
    • Теорема Лагранжа Пусть функция y=f(x) непрерывна на отрезке [a, b] и дифференцируема в интервале (a, b). Тогда существует хотя бы одна точка сÎ(a, b), для которой выполняется условие: .
    • Теорема Коши
    • Теорема Лопиталя (Правило Лопиталя) Пусть - функции, непрерывные на [а, b], дифференцируемые в(а, b);  при всех хb) и f(а) = (а) = 0. Примеры на применение правила Лопиталя.
    • Применение производной к исследованию функций
    • Интервалы монотонности. Экстремумы Функция у = f(х) называется возрастающей (убывающей) на некотором промежутке, если для любых значений x2>x1 этого промежутка выполняется условие f(x2) > f(x1)(f(x2) < f(x1)) . Теорема ( достаточное условие монотонности функции). Если непрерывная на отрезке [а, b] функция у = f(х) в каждой точке интервала (а, b) имеет положи­тельную (отрицательную) производную, то эта функция возрастает (убывает) на отрезке [а, b].
    • Выпуклость и вогнутость графика функции
    • Точки перегиба График дифференцируемой функции у = f(x) называется выпуклым (вогнутым) в интервале (а,b), если он расположен ниже (выше) любой своей касательной на этом интервале. Теорема ( достаточный признак существования точки перегиба). Если вторая производная непрерывной функции меняет знак при переходе аргумента через точку х0, то точка (х0; f(х0)) является точкой перегиба графика функции. Асимптотой графика функции у = f(x) называется прямая, расстояние от которой до текущей точки графика функции стремится к нулю при неограниченном удалении этой точки от начала координат.
    • План исследования функции и построение графика
    • Пример . Исследовать функцию y= x-2arctgx и построить ее график.
    • Пример . Исследовать функцию и построить ее график.

    Пределы и непрерывность функции

    • Предел функции Совокупность значений некоторых величин, как правило, лишенных физического содержания, представляет собой некоторые числовые множества. Будем обозначать множества большими буквами латинского алфавита: А,В,..,Х,У. Окрестностью О (а) точки а называется любой интервал a < x < b, окружающий эту точку, из которого, как правило, удалена сама точка а.
    • Пример. Доказать, что   (2х +1) = 7.
    • Пример . Функция у = sin х ограничена на всей числовой оси, так как . Функция   не ограничена на множестве, содержащем точку х = 0.
    • Односторонние пределы Любой интервал (a, а), правым концом которого является точка а, называется левой окрестностью точки а.  Аналогично любой интервал (a, b), левым концом которого является точка а, называется ее правой окрестностью.
    • Пример. Функция f(x) = x2 является бесконечно малой при x®0, а   g (x) = бесконечно большой (при x ¹ 0).
    •   Замечание. Если , то в силу определения предела функции получаем: ïf(x)-Aï<e при xÎ O(а, б), что означает, что f(x)A является бесконечно малой при x® a. Тогда, полагая f(x)-A=a(x), имеем f(x) = A + a(x), где a(x) ® 0 при x ® a. Рассмотрим на примерах основные приёмы раскрытия неопределенностей
    • Пример . Найти Пример. Найти пределы: , ,
    • Некоторые признаки существования предела функции Не всякая функция имеет предел, даже будучи ограниченной. Например, sin x при x ® ¥ предела не имеет, хотя £ 1.  Укажем два признака существования предела функции.
    • Первый и второй замечательные пределы
    • Теорема. Предел отношения синуса бесконечно малой дуги к самой дуге, выраженной в радианах, равен единице, то есть   .   Этот предел называют первым замечательным пределом. С его помощью вычисляют пределы выражений, содержащих тригонометрические функции.
    • Непрерывность функции Функция f(x), определенная на множестве Х, называется непрерывной в точке , если
    • Пример. Функция   является непрерывной справа в точке х = 0, слева же от этой точки она вообще не определена.
    • Точка разрыва функции, не являющаяся точкой разрыва первого рода или точкой устранимого разрыва, является точкой разрыва второго рода.
    •   Все элементарные функции непрерывны в области определения Так что   всюду непрерывна, так как всюду определена, а, например, функция   разрывна в точке .
    • Теорема Больцано-Коши об обращении функции в нуль.

    Векторная алгебра и аналитическая геометрия

    • Векторы. Основные понятия Вектором называется направленный отрезок. Обозначается вектор , , , , AB, a (А – начало вектора, В – его конец). Линейные операции над векторами Линейными операциями называют операции сложения и вычитания векторов и умножения вектора на число. Вычитание векторов. Разностью векторов и называется такой вектор , который в сумме с вектором дает вектор : Û .
    • Умножение вектора на число. Произведением вектора на действительное число называется вектор (обозначают ), определяемый следующими условиями: 1)      , 2)      при и при .
    • Проекция вектора на ось Углом между двумя ненулевыми векторами и называется наименьший угол ( ), на который надо повернуть один из векторов до его совпадения со вторым. Предварительно нужно привести векторы к общему началу О
    • Пример . При каком условии ?
    • Координаты вектора Рассмотрим декартову прямоугольную систему координат Oxyz. Обозначим , , – единичные векторы, направленные соответственно вдоль осей Ox, Oy, Oz (орты осей). Эти векторы называются декартовым прямоугольным базисом в пространстве.
    • Направляющие косинусы вектора Направление вектора в пространстве определяется углами , которые вектор образует с осями координат. Косинусы этих углов называются направляющими косинусами вектора: , , .
    • Деление отрезка в данном отношении
    • Пример. Даны вершины треугольника , , . Найти точку пересечения медиан этого треугольника и орт вектора
    • Пример. Показать, что точки , , лежат на одной прямой, причем A – между B и C.
    • Скалярное произведение векторов Скалярным произведением двух векторов (обозначается или ) называется число, равное произведению длин этих векторов на косинус угла между ними: , где .
    • Пример. Найти угол между диагоналями параллелограмма, построенного на векторах и .
    • Смешанное произведение векторов Смешанным, или векторно-скалярным произведением трех векторов (обозначается ) называется произведение вида .
    • Теорема. Для того чтобы три вектора были компланарны, необходимо и достаточно, чтобы их смешанное произведение равнялось нулю.
    • Прямая на плоскости Пусть – заданная точка на прямой , – вектор, перпендикулярный прямой , его называют нормальным вектором прямой, и пусть – произвольная точка прямой . Пусть – заданная точка на прямой , – вектор, параллельный прямой, его называют направляющим вектором прямой, и пусть – произвольная точка прямой Пусть заданная точка на прямой , – угол наклона прямой к оси ,
    • Угол между двумя прямыми. Пусть прямые и заданы соответственно уравнениями , , где ,
    • Расстояние от точки до прямой. Пусть прямая на плоскости задана уравнением и точка имеет координаты
    • Пример. Прямая задана уравнением . Составить уравнения а) прямой , проходящей через точку параллельно прямой ; б) прямой , проходящей через начало координат перпендикулярно прямой .
    • Пример. В треугольнике с вершинами , , составить уравнения медианы , высоты , найти длину высоты
    • Кривые второго порядка Кривой второго порядка называется линия, определяемая уравнением второй степени относительно текущих декартовых координат х, у Уравнение содержит только четные степени х, у, следовательно, кривая симметрична относительно осей координат.
    • Гиперболой называется множество всех точек плоскости, для каждой из которых модуль разности расстояний до двух данных точек этой плоскости, называемых фокусами, есть величина постоянная, меньшая, чем расстояние между фокусами.
    • Полагая в каноническом уравнении у = 0, найдем точки пересечения гиперболы с осью ОХ: х = ±а. При х = 0 уравнение не имеет решений, то есть с осью ОУ гипербола не пересекается. Точки А1(-а; 0) и А2(а; 0) называются вершинами гиперболы. Фокальная ось (ось, на которой лежат фокусы) называется действительной осью гиперболы, а перпендикулярная ей ось – мнимой осью.
    • Из симметрии гиперболы относительно осей координат следует, что этим же свойством обладает прямая Прямые и называются асимптотами гиперболы.
    • Параболой называется множество всех точек плоскости, равноудаленных от данной точки, называемой фокусом, и данной прямой, называемой директрисой.
    • Уравнение содержит у лишь в четной степени, следовательно, кривая симметрична относительно оси ОХ. При х = 0 у = 0, то есть парабола проходит через начало координат.
    • Общее уравнение кривой второго порядка имеет вид  
    • Уравнение такого вида может определять: 1) эллипс (в частности, окружность), 2) гиперболу, 3) параболу, 4) пару прямых (параллельных, пересекающихся либо совпадающих), 5) точку или не определять никакой линии.
    • Полярная система координат на плоскости определяется заданием некоторой точки О, называемой полюсом, луча Ор, исходящего из этой точки и называемого полярной осью, и единицы масштаба
    • Пример. Построить в полярной системе координат точки
    • Пример. Дано полярное уравнение линии Построить эту линию по точкам. Найти ее декартово уравнение, расположив систему Охy
    • Пример. Найти полярное уравнение окружности
    • Неполные уравнения плоскостей Если в уравнении плоскости какие-либо из коэффициентов равны нулю, то получится неполное уравнение плоскости.
    • Прямая в пространстве Прямую в пространстве можно задать уравнениями, аналогичными уравнениям прямой на плоскости
    • Пример. Записать канонические уравнения прямой, заданной общими уравнениями
    • Взаимное расположение прямой и плоскости
    • Пусть требуется найти точку пересечения прямой и плоскости
    • Пример. Показать, что прямая лежит в плоскости
    • Поверхности второго порядка
    • Цилиндрической поверхностью называется поверхность, составленная из всех прямых, пересекающих данную линию L и параллельных данной прямой . Линия L при этом называется направляющей цилиндрической поверхности, а каждая из прямых, составляющих поверхность и параллельных прямой , – ее образующей
    • Уравнение определяет гиперболический цилиндр. Его направляющая – гипербола, лежащая в плоскости Оуz, образующие параллельны оси Ох
    • Конической поверхностью называется поверхность, составленная из всех прямых, пересекающих данную линию L и проходящих через данную точку Р. Линия L при этом называется направляющей конической поверхности, точка Р – ее вершиной, а каждая из прямых, составляющих коническую поверхность, – ее образующей
    • Эллипсоидом называется поверхность, которая в некоторой декартовой прямоугольной системе координат определяется уравнением Это замкнутая овальная поверхность, симметричная каждой из координатных плоскостей
    • Двуполостным гиперболоидом называется поверхность, которая в некоторой декартовой прямоугольной системе координат определяется уравнением

    Элементы линейной алгебры

    • Определители второго порядка Определение. Выражение называется определителем 2-го порядка.
    • Определители 3-го порядкаОпределение. Выражение
    • называется определителем 3-го порядка.
    • Пример. Вычислить определитель: по правилу треугольника.
    • Алгебраическим дополнением элемента определителя 3-го порядка называется минор этого элемента, взятый со знаком плюс, если элемент стоит на пересечении строки и столбца с четной суммой номеров, и со знаком минус, если элемент стоит на пересечении строки и столбца с нечетной суммой номеров.
    • Пример. Вычислить определитель , разлагая его по элементам второй строки.
    • Определитель в правой части формулы называют транспонированным по отношению к определителю в левой части этой формулы. Если две строки (столбца) определителя равны, то определитель равен нулю. Если элементы какого-либо ряда определителя пропорциональны элементам параллельного ряда, то определитель равен нулю.
    • Пример. Вычислить определитель , используя свойства определителей.
    • Определители 4-го порядка. Методы их вычисления
    • Метод понижения порядка определителя основан на обращении всех, кроме одного, элементов определителя в нуль с помощью свойств определителей. Метод приведения к треугольному видузаключается в таком преобразовании данного определителя, когда все элементы его, лежащие по одну сторону одной из его диагоналей, становятся равными нулю. Суммой матриц размера называется матрица того же размера, каждый элемент которой равен сумме соответственных элементов матриц A и B:
    • Пример. Вычислить произведение матриц и .
    • Решение. Согласно определению произведение матриц получаем так: умножаем элементы первой строки матрицы A на соответствующие элементы первого столбца матрицы B, произведения складываем и ставим в первую строку и первый столбец матрицы-произведения. Умножаем далее элементы первой строки матрицы A на элементы второго столбца матрицы B, произведения складываем и ставим в первую строку и второй столбец матрицы-произведения и т.д. Матрицу, все элементы которой равны нулю, мы будем называть нулевой .
    • Пример . Пусть . Найти значение многочлена
    • Квадратная матрица называется невырожденной (неособенной), если её определитель отличен от нуля, и вырожденной (особенной), если определитель её равен нулю.
    • Рассмотрим матрицу,составленную из алгебраических дополнений к элементам матрицы А и называемую присоединенной к матрице А. Отметим, что алгебраические дополнения к элементам квадратной матрицы находят так же, как к элементам ее определителя. В присоединенной матрице алгебраические дополнения элементов строки стоят в столбце с таким же номером.
    • Пример. Найти матрицу, обратную для матрицы
    • Ранг матрицы Рассмотрим прямоугольную матрицу mхn. Выделим в этой матрице какие-нибудь k строк и k столбцов, 1 £ k £ min (m, n) . Из элементов, стоящих на пересечении выделенных строк и столбцов, составим определитель k-го порядка.
    • Пример. Найти ранг матрицы
    • Пример. Вычислить ранг матрицы
    • Пример. Решить систему уравнений по правилу Крамера:
    • Пример. Матричным методом решить систему уравнений
    • Теорема Кронекера-Капелли Для того чтобы система m неоднородных линейных уравнений с n неизвестными была совместной, необходимо и достаточно, чтобы
    • Метод Гаусса Пусть требуется решить систему АХ=В. Над строками расширенной матрицы произведем элементарные преобразования, приводящие ее к виду, когда ниже элементов а11, а22, …, аrr будут стоять нули. Этот вид матрицы будем называть трапециевидным.
    • Пример. Решить систему
    • Пример. Исследовать совместность системы
    • Пример. Исследовать совместность и найти общее решение системы
    • Однородные системы
    • Рассмотрим однородную систему линейных уравнений  Такая система всегда совместна, так как этой системе удовлетворяют значения х1=х2=…=хn=0. Это решение системы называют тривиальным.
    • Пример. Решить систему